
Symmetry of a Pastry
A Mathematical Investigation into the Braid Group

Ethan Partida

August 7, 2020

Abstract

In this paper we introduce braid groups from two perspectives,
physical and algebraic. While a physical interpretation provides good
intuition for the braid group, it lacks the precision that is useful for
proving properties of this group. By first giving an introduction to
the algebraic structure of the symmetric group and then shifting this
perspective to the more generalized braid group, we gain the precision
our physical interpretation lacks. Finally, we use this understanding
to explore applications of the braid group in cryptography and knot
theory.

Contents

1 Introduction 2

2 The Symmetric Group 2

3 The Braid Group 5

4 Applications 8
4.1 Cryptology . 9
4.2 Knot Theory . 10

5 Acknowledgments 13

1

1 Introduction

I recently participated in a reading course centered around Björner and
Brenti’s Coxeter groups text[1]. Throughout the reading, we identified things
that looked like ”s1s2s1 = s2s1s2” as braid relations. This naming had no
concrete meaning to me. My best guess was that H.S.M Coxeter was just a
particularly peckish mathematician, see Figure 1. Not surprisingly, it turns
out that this was not the case. Its name comes from a rich theoretical back-
ground which somehow encompasses topology, quantum computing, knot
theory and pastries. This paper will be a short dive into some of this back-
ground.

Figure 1: A braid relation, yum!

2 The Symmetric Group

To understand the theory behind braid relations we will first detour and
learn about the symmetric group. The symmetric group, Sn, is the group
of permutations of a set of size n. A permutation is a rearrangement of
objects, e.g. ”In what ways can I rearrange all six the books on my shelf?” To
illustrate this, consider S3. It contains all the permutations of the set {a, b, c}.
As an example, (12) is an element of this group. It is the permutation which
swaps the first and second element of a set, (12){a, b, c} = {b, a, c} while
keeping everything else the same. See Figure 2 for a pictorial illustration of
this. We indicate the element (i i+1), the permutation which swaps the ith
and i+ 1th element, as si.

2

Figure 2: s1 acting on {a, b, c}

a b c

b a c

Interestingly, {si | 1 ≤ i < n} generates the group Sn. This means that
given any permutation of a set, we can recreate it by repeatedly swapping
two adjacent elements. As an example,

(1423){a, b, c, d} = {c, d, b, a}
and

s3s2s3s1s2{a, b, c, d} = s3s2s3s1{a, c, b, d} = s3s2s3{c, a, b, d} =

s3s2{c, a, d, b} = s3{c, d, a, b} = {c, d, b, a}

We are able to pictorially represent this process using Figure 3. On the
right, two adjacent elements are swapped one by one. While on the left, each
element traces a direct path to its end location. One can trace the paths
of all of the elements in each representation and find they end in the same
location. This means that they are actually the same permutation!

Figure 3: (1423) and s3s2s3s1s2 acting on {a, b, c, d}

s2
s1
s3
s2
s3

a b c d

c d b a

a b c d

c d b a

Along with generating the group, all si follow a specific set of relations.
We will now outline those relations. The first relation they follow is s2i =

3

e. This says that applying si twice in a row is the same as doing nothing
(Figure 4). They also follow the relation sisj = sjsi when |i − j| > 1. One
can swap two pairs of elements in any order as long as the pairs are far
enough apart (Figure 5). This is a secret braid relation, it is not typically
called a braid relation but it is still a braid relation. Lastly, we have that
sisi+1si = si+1sisi+1. This is our coveted braid relation from the introduction!
This relation gives equivalent ways to swap three adjacent elements. It is the
toughest to visualize but Figure 6 gives another visual representation.

Figure 4: s21 and e acting on {a, b, c}

a b c

s1

s1

e

a b c

a b c

a b c

Figure 5: s1s3 and s3s1 acting on {a, b, c, d}

s3

s1

s1

s3

a b c d a b c d

b a d c b a d c

Given enough generators and relations, we can write a presentation for
a group. A presentation is a neat way to completely describe a group. It
encompasses all the elements of a group and their relationships in a small
amount of easily legible ink. It follows the form:

〈Generators|Relations〉

.

4

Figure 6: s1s2s1 and s2s1s2 acting on {a, b, c}

a b c a b c

s1

s2

s1

s2

s1

s2

abc abc

The generators, si, and the relations we described above are actually
sufficient to write a presentation of Sn. This presentation is:

Sn =
〈
s1, s2, . . . , sn−1|s2i = e, sisj = sjsi, sisi+1si = si+1sisi+1

〉
.

When one first sees this one might think presentations are a basic way of
writing groups and thus they are not very exciting. This is not the case. In
fact, their simplicity is what makes them so exciting.

The most basic way one can describe a group is by creating a table which
shows the product of all elements of a group. This is called a Cayley Table.
A Cayley table is very similar to a multiplication table. A Cayley Table of
S3 is given in Figure 7.

This might seem like a fine way to write stuff until one attempts to de-
scribe a group of meaningful size. By its tabular nature, there are (Size of Group×
Size of Group) entries in the table. The symmetric group, Sn, has size n!.
Therefore there are (n!)2 entries in its Cayley Table. This quickly becomes
a detrimental amount of entries. In fact, there are (6!)2 = 518,400 entries
in the Cayley Table for S6. Writing our presentation for S6 is much less
work and much more understandable than writing a practically innumerable
amount of table entries. It is simply:

S6 =
〈
s1, s2, . . . , s5|s2i = e, sisj = sjsi, sisi+1si = si+1sisi+1

〉
.

.

3 The Braid Group

We will now introduce the braid group from a symmetric group perspective
and then quickly give a much more visual explanation. What happens when

5

Figure 7: A Cayley Table for S3, each element of the table is the product of
its row and column group element

e s1 s2 s1s2 s2s1 s1s2s1

e e s1 s2 s1s2 s2s1 s1s2s1
s1 s1 e s2s1 s1s2s1 s2 s1s2
s2 s2 s1s2 e s1 s1s2s1 s2s1
s1s2 s1s2 s2 s1s2s1 s2s1 e s1
s2s1 s2s1 s1s2s1 s1 e s1s2 s2
s1s2s1 s1s2s1 s2s1 s1s2 s2 s1 e

we remove all “non-braid” relations from our presentation for the symmetric
group? Will we break the space-time continuum? Solve the Riemann Hy-
pothesis? No, but the answer is almost as astonishing. We get a presentation
for the braid group,

Sn =
〈
s1, s2, . . . , sn−1|s2i = e, sisj = sjsi, sisi+1si = si+1sisi+1

〉
��Sn Bn = 〈s1, s2, . . . , sn−1|����s2i = e, sisj = sjsi, sisi+1si = si+1sisi+1〉
Bn = 〈σ1, σ2, . . . , σn−1|σiσj = σjσi, σiσi+1σi = σi+1σiσi+1〉 .

One can see from this presentation, that the braid group is actually of infinite
size since σ1, σ1σ1, σ1σ1σ1, . . . are all unique elements in the group.

While this presentation is interesting to look at, it does not give us much
intuition to what this group is actually like. For that, we need pictures and
concrete examples. How can one picture an infinite group? Well the answer
is actually quite intuitive and follows directly from our pictorial view of the
symmetric group.

While Sn can be thought of as all sets of lines which send a collection of n
objects to a rearrangement of those objects, we can picture Bn by transform-
ing those lines into strings in three dimensions. Given a collection of objects
and a duplicate collection of those objects, we can run strings from the first
set of objects to the duplicate set of objects. A string runs from an object
in the first set to an object in the second set. It can go in front of or behind
other strings, but it can’t go straight through another string. We also force
the string to continuously move towards the second collection of objects, it
can’t move backwards. We do this to prevent creating any knots which would
complicate our picture. We call each unique arrangement of strings a braid.

6

We call two braids the same if one can bend, stretch, or shrink the strings so
that the braids are identical. In other words, we can move the strings around
but can’t uncross strings and can’t switch which objects the strings are at-
tached to. This concept is best understood through examples and pictures.
Figure 8 and Figure 9 provide clear pictures of example braids in our group.

Figure 8: These two braids are equivalent. They can be bent into identical
braids without uncrossing strings

a b c a b c

b a c b a c

Figure 9: These two braids are different. There is no way to transform one
into another without changing what objects the strings connect to.

a b c

b a c

a b c

b a c

What does σ1 look like in this pictorial view? Well it is the braid which,
while keeping all other strings straight, crosses the first string underneath
the second string and thus also crosses the second string over the first string.
Figure 10 illustrates this braid. Similarly, σi crosses the i string underneath
the i + 1 string while keeping all others straight. Since we no longer have
that σ2

i = e, σ−1
i must be its own unique element. In fact, it is the braid

which crosses the i string underneath the i + 1 string and keeps all others
straight. Figure 11 illustrates how the composition of these elements is the
same as doing nothing.

From our presentation we can infer that every possible braid is just a
composition of these adjacent crosses. This is very non-obvious when one

7

Figure 10: σ1 acting on {a, b, c}

a b c

b a c

Figure 11: Through the power of bending we see that σ1σ
−1
1 acts the same

on {a, b, c} as doing nothing

a b c

a b c

a b c

a b c

a b c

a b c

σ1

σ−1
1

takes on the pictorial view of this group. A nice observation and clever use
of stretching and shrinking allows us to give a reasonable argument as to why
this is the case.

First notice that for two non adjacent string to cross each other, they
must make a sequence of crosses past adjacent strings. There is no way two
strings can cross each other without crossing the strings in-between them.
Thus a braid is made up entirely of adjacent crossings. Since we can stretch
the strings, stretch them up and down so that each crossing is in its own
height segment with no other crossings at the same height. This braid now
has the exact structure as a composition of adjacent crossings. See Figure 12
for a pictorial example of this process.

4 Applications

Knowing the basics structure of the braid group, we are now able to explore
various applications of braid groups. We will look at two examples from very
different fields of mathematics, cryptology and knot theory.

8

Figure 12: The process of separating a complicated braid to a slightly less
complicated product of σis

σ1

σ3

σ−1
2

σ1

σ2

4.1 Cryptology

Quantum computers are special. They are fundamentally different than to-
day’s computers. By taking advantage of principles like superposition, a
quantum computer stores its information using qubits. A typical bit stores
only 1’s and 0’s, true and false, while a qubit is able to store 1’s, 0’s, and the
superpositional state of both 1 and 0, true, false and maybe.

This difference allows for quantum computers to be significantly better at
certain tasks than non-quantum computers. It just so happens that solving
the fundamental equations of many of today’s cryptographic protocols is one
of these tasks. These protocols encode information by using math problems
that are very hard for normal computers to solve.

The most common math problem for a cryptology to be based on is that
of factoring integers into their prime factors. An example of this would be:

28 = 2 · 14 = 2 · 2 · 7.

When the numbers are much larger than 28, this is a very difficult thing to
do. In fact it would take a traditional super computer more time than the
universe has existed to brute force break a message using these cryptologies.
Worryingly, factoring integers into prime factors falls under the tasks easy
for a quantum computer to solve.

Because the world needs to encrypt stuff and effective quantum computers
are an eventual reality, cryptologists have tried to create new protocols which
are hard to break no matter the type of computer. One thing the protocols
easily broken by quantum computers have in common is that they are based

9

on commutative groups. The integers is an example of a commutative group,
the order of addition does not matter i.e. 2 + 3 = 6 = 3 + 2. Thus new
protocols are being developed based on non-commutative groups.

Fortunately, the braid group is non-commutative since σiσi+1 6= σi+1σi.
Because of this fact, researchers have attempted to create a new protocol
based on a hard to compute problem within the braid group[2][3]. An ex-
ample of a hard problem within the braid group is the conjugacy search
problem. The problem is as follows: Given two braids, x and y in Bn, find a
braid s ∈ Bn so that y = sxs−1. It is known that no algorithm can compute
s in under polynomial time regarding the size of n. This means that, like
factoring integers, with a big enough n this problem is practically unsolvable.
Because this is a hard problem relying on non-commutative groups, quantum
computers will not solve it any easier.

4.2 Knot Theory

Knot Theory is quite simply, the study of mathematical knots. Mathematical
knots differ slightly from what we might normally consider to be a knot.
Mathematical knots are defined as a circle embedded in three dimensions.
What this means is the knot has to have its ends connected. So Figure 13,
which most people would call a knot, is not considered a mathematical knot
since its ends do not connect. While if ones pocket was extra cluttered and
they pulled Figure 14 out, it would be a mathematical knot since its ends
are connected.

Mathematicians define knots this way because, like braids, they want to
be able to bend and stretch knots without changing them. Since the ends
of Figure 13 are disconnected, one could (with varying levels of frustration)
untangle the knot back into a straight line. Meanwhile, it’s impossible to
untangle Figure 14, without breaking the tape.

How do I know that is impossible to untangle Figure 14? I know this
because of knot theory! Figure 14 is actually the trefoil knot, the simplest
knot that is not just a circle. One way to measure complexity of a knot is
to count the minimum number of crossings it has. We need to count the
minimum number of crossings because we are able to bend our knots. This
would allow us to add any number of crossings we’d like, without changing
the knot. See Figure 15 for an example of this.

Now that we understand complexity, a natural question to ask is, ”How
many knots have a specific number of crossings and what do they look like?”.

10

Figure 13: A picture of my headphones after roughly six seconds in my pocket

Figure 14: A very messy pocket leads to a mathematical knot!

We have been able to fully classify knots of small numbers of crossings. See
Figure 16 for a table of all knots with 0 − 7 crossings. As the number of
crossings increases, this becomes a complicated and difficult question.

One way we are able to better understand knots is through braids! By
connecting the ends of the strands of a braid in a special way, we are able

11

Figure 15: While the trefoil has a minimum of three crossings, we can add
as many extra crossings as we’d like

Figure 16: A knot table classifying all knots with 0-7 crossings

to form a knot. Figure 17 shows the process of closing up the braid σ1σ1σ1
in order to form the trefoil knot. Its clear from this process that every braid
can be formed into a knot.

12

Figure 17: The process of converting a braid into a knot

In fact, every knot can be formed as closure of a braid. This is an en-
tirely non-trivial statement. It so non trivial that it actually has a name,
Alexander’s Theorem. It relies upon giving an orientation to a knot and
then performing careful bends and twists to align segments of the knot so
the orientation looks a specific way. By doing this, one actually forms a pic-
ture of a closed up braid. Since this process works for any knot, we’ve shown
that every knot is a closed up braid.

This is a quite exciting fact, it gives us an avenue to use our knowledge of
braids to better understand knots. The first knot invariant, which is a tool
that can tell us if two knots are different, can actually be formed using prop-
erties of the braid group. This takes some more complicated mathematics,
but the the key points are centered around our ability to write any braid as
a product of σis and this transformation of braids into knots.

5 Acknowledgments

I am grateful to be able to thank my mentor, Vic Reiner, for all of his advice
and teachings. Without him, braids and their braid relations would have just
become a passing peculiarity for me. I’d also like to thank the University
of Minnesota Twin-Cities McNair Team. I am incredibly grateful for the
opportunity and funding to be able to spend a summer learning about the
math I enjoy.

13

References

[1] A. Bjorner and F. Brenti. Combinatorics of Coxeter Groups. Grad-
uate Texts in Mathematics. Springer Berlin Heidelberg, 2006. isbn:
9783540275961. url: https://books.google.com/books?id=1TBPz5sd8m0C.

[2] Xiaoming Chen et al. A New Cryptosystem Based on Positive Braids.
2019. arXiv: 1910.04346 [cs.CR].

[3] Ki Hyoung Ko et al. “New Public-Key Cryptosystem Using Braid Groups”.
In: Advances in Cryptology — CRYPTO 2000. Ed. by Mihir Bellare.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 166–183. isbn:
978-3-540-44598-2.

14

https://books.google.com/books?id=1TBPz5sd8m0C
https://arxiv.org/abs/1910.04346

	Introduction
	The Symmetric Group
	The Braid Group
	Applications
	Cryptology
	Knot Theory

	Acknowledgments

