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Braids

We define a braid as the set of strings which connect one set of objects to
a duplicate set of those objects. We are allowed to bend and stretch the
strings, but not uncross them or change what objects they are connected
to. Figure 1 gives an example of a braid in this group and an action we
can take on the braid without changing it.
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Fig. 1: An example of a braid, we can bend this braid without changing it

The braid group is the mathematical formalization of physical braids. This
formalization allows us to create and apply general rules to even the most
complicated of braids. The braid group appears in a variety of places, such
as knot theory, particle physics, cryptography, or even molecular biology.
Some interesting properties and general rules of the braid group are:

•We can compose braids by adding one directly after the other. This
allows for us to have a sense of ”multiplying” braids.

•Let σi be the braid which crosses the ith string underneath the string
to its right, see Figure 2. One can observe that each braid consists of a
sequence of adjacent crossings. This allows for us to write any braid as
a product of σi’s, Figure 3 illustrates this process.
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Fig. 2: σ1 acting on a braid of three strings
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Fig. 3: The process of writing any braid as a product of σis

• It’s clear that σi has an inverse, just pass the ith string over the top of
the string to its right. Figure 4 visually describes this. Thus, since every
braid is a product of σis, every braid has an inverse.
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Fig. 4: Since one string simply passes underneath the other, we can undue the crossings

Knot Theory

Knot Theory is quite simply, the mathematical study of knots. One can
think of a knot as a string with its ends connected to each other. For an
example, see Figure 5. Much like braids, we are able to bend and stretch
this string as long as we don’t break any physical laws.

Fig. 5: An example of a knot, the trefoil!

A central goal of knot theory is to characterize every possible knot. Obvi-
ously, there are infinitely many different knots so we will try to start with
uncomplicated knots.
Before we can do this, we must first determine what it means to be uncom-
plicated. One way of classifying knots is to count how many crossings they
have. Figure 5 has three crossings. We will determine a knots complexity
by this number.
It turns out there is a unique amount of knots for each specific number of
crossings. In Figure 6, we classify the first few of these into a knot table.

Fig. 6: A knot table classifying all knots with 0-7 crossings

An interesting theorem states that every knot is just a closed up braid. This
”closed up” braid is formed by taking the ends of the braid and connecting
to them each other just like Figure 7.

Fig. 7: The process of converting a braid into a knot

This theorem allows us to increase the ways in which we can understand
knots. If something is true for braids, then an analog of it is true for knots!

Cryptography

Cryptography is the science of encrypting information. Much like the se-
cret codes created in elementary school, cryptologists seek to create codes
where the sender and receiver understand their messages while they appear
like gibberish to an outsider.
To do this, they create a key which gives the solution to an incredibly
difficult math problem. They then use this to encode the information so
that it only makes sense if one has the solution to this problem. Figure
8 illustrates this procedure. Since both the sender and receiver have the
solution, the message makes perfect sense to them. But because this solu-
tion is incredibly hard to find naturally, no outsider can make sense of the
message.

Fig. 8: An overview of a typical cryptology

Many of the typical cryptologies use math problems are based on factoring
integers into their prime factors. An example of this would be:

28 = 2 · 14 = 2 · 2 · 7.
When the numbers are much larger than 28, this is a very difficult thing to
do. In fact it would take a traditional super computer more time than the
universe has existed to break a code with these encryptions.
Quantum computing’s impending arrival poses a big threat to the difficulty
of these problems. Because of their quantumness, quantum computers will
be able to solve the factorization problem with relative ease. This means
that almost all of our secure data will no longer be secure. Braid groups
might be an answer to this problem.
The key quality which makes factorization easily solvable by quantum com-
puters is the fact they are commutative, order of addition does not matter
i.e. 2 + 3 = 6 = 3 + 2. Luckily braid groups are not commutative, since

σ1σ2 6= σ2σ1

. Thus basing a cryptology on a hard to solve problem in the braid group
might make a quantom-proof encryption!
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