Real Powers of Monomial Ideals

by Josiah Lim, Ethan Roy and Ethan Partida
on Mar 14, 2021
» Outline

* Background
* Geometric Representations
* Real Powers
* Jumping numbers

Background

* What is a Monomial?
* What is a Monomial Ideal?

Background

* What is a Monomial?
* What is a Monomial Idea?
» What is a monomial?

Definition (Monomial)

A monomial is a product of variables.
» What is a monomial?

Definition (Monomial)

A monomial is a product of variables.

Examples

$x^{4}, x^{2} y$ and $x y z$ are monomials.
» What is a monomial?

Definition (Monomial)

A monomial is a product of variables.

Examples

$x^{4}, x^{2} y$ and $x y z$ are monomials.

Non-examples

$x+y$ and $x y-z$ are polynomials, not monomials.

Background

* What is a Monomia?
* What is a Monomial Ideal?
» What is a Monomial Ideal?

Definition (Monomial Ideal *Spooky*)

Let $M=\left\{m_{1}, \ldots, m_{k}\right\}$ be a set of monomials. The ideal generated by M, written $I=\left(m_{1}, \ldots, m_{k}\right)$, is the set containing all polynomials which have the form $p_{1} m_{1}+\ldots+p_{k} m_{k}$ where each p_{i} is a polynomial.

Geometric Representations

* Monomials and Monomial Ideals \rightarrow Staircases
* What is a Newton Polytope?
* What is a Newton Polyhedron?

Geometric Representations

* Monomials and Monomial Ideals \rightarrow Staircases
* What is a Newton Polytope?
* What is a Newton Polyhedron?

»Lattice Points

Deffintion (Lattice Point)

A point $x \in \mathbb{R}^{n}$ is a lattice point if it has integer coordinates

Green: Lattice Point, Red: Not a Lattice Point

» Monomials \rightarrow Lattice Points

* Each monomial has a corresponding lattice point.
* A monomial $x^{a} y^{b}$ corresponds to (a, b)
» Monomials \rightarrow Lattice Points
* Each monomial has a corresponding lattice point.
* A monomial $x^{a} y^{b}$ corresponds to (a, b)

Example

In the $x y$ plane,

$$
\begin{aligned}
x y^{3} & \rightarrow(1,3) \\
x^{2} y & \rightarrow(2,1) \\
x^{4} & \rightarrow(4,0)
\end{aligned}
$$

» Generators \rightarrow Lattice Points

* Monomials ideals may seem complicated, but pictures are not!

» Generators \rightarrow Lattice Points

* Monomials ideals may seem complicated, but pictures are not!
* For the ideal $I=\left(x y^{3}, x^{2} y, x^{4}\right)$, the generators are $(1,3),(2,1)$ and $(4,0)$.

Generators of the ideal $I=\left(x y^{3}, x^{2} y, x^{4}\right)$

»Divisibility

* Monomials in an ideal are those divisible by some of its generators

》 Divisibility

* Monomials in an ideal are those divisible by some of its generators
* $x^{2} y^{2}=y \cdot x^{2} y \in\left(x y^{3}, x^{2} y, x^{4}\right)$
* $x^{3} y=x \cdot x^{2} y \in\left(x y^{3}, x^{2} y, x^{4}\right)$
»Divisibility
* Monomials in an ideal are those divisible by some of its generators
* $x^{2} y^{2}=y \cdot x^{2} y \in\left(x y^{3}, x^{2} y, x^{4}\right)$
* $x^{3} y=x \cdot x^{2} y \in\left(x y^{3}, x^{2} y, x^{4}\right)$

》Divisibility

* Moving up and to the right corresponds to multiplying by x and y respectively
* Monomials divisible by a generator are those up and to the right of it

Monomials divisible by $x^{2} y$

》Divisibility

* Moving up and to the right corresponds to multiplying by x and y respectively
* Monomials divisible by a generator are up and to the right of it

Monomials divisible by $x^{2} y$ or $x y^{3}$

»Divisibility

* Moving up and to the right corresponds to multiplying by x and y respectively
* Monomials divisible by a generator are up and to the right of it

Monomials divisible by $x^{2} y, x y^{3}$ or x^{4}

» Ideals \rightarrow Staircases
Filling in these boxes, we get a monomial ideal's corresponding staircase 1.

The staircase of $\left(x^{2} y, x y^{3}, x^{4}\right)$

${ }^{1}$ See [Mil05, Chapter 3] for lots of interesting properties of these staircases

» Points \rightarrow Ideals

Given a set of points, we can construct a monomial ideal by looking at the staircase the points generate.

The points $(1,1),(2,0),(2,3)$

» Points \rightarrow Ideals

Given a set of points, we can construct a monomial ideal by looking at the staircase the points generate.

The staircases of $(1,1),(2,0),(2,3)$

» Points \rightarrow Ideals

Given a set of points, we can construct a monomial ideal by looking at the staircase the points generate.

The staircase of $\left(x y, x^{2}, x^{2} y^{3}\right)=\left(x y, x^{2}\right)$

Geometric Representations

* Monomials and Monomial Ideals \rightarrow Staircases
* What is a Newton Polytope?
* What is a Newton Polyhedron?

Definition (Convex)

A space $K \subseteq \mathbb{R}^{n}$ is convex if $\forall a, b \in K$, the line between a and b is contained in K.

Left: Convex

Right: Not Convex

» Convex Hull

Definition (Convex Hull)

The convex hull of $K \subseteq \mathbb{R}^{n}$ is the smallest convex space containing K.

» Convex Hull

Definition (Convex Hull)

The convex hull of $K \subseteq \mathbb{R}^{n}$ is the smallest convex space containing K.

This is the space formed by "wrapping a rubber band around $K^{\text {" }}$.
The Convex Hull of K

» What is a Newton Polytope?

Definition (Newton Polytope)

The Newton polytope of an ideal $I, n p(I)$, is the convex hull of its generators.

Generators of $\left(x y^{3}, x^{2} y, x^{4}\right)$

»What is a Newton Polytope?

Definition (Newton Polytope)

The Newton polytope of an ideal $I, n p(I)$, is the convex hull of its generators.

Newton Polytope of $\left(x y^{3}, x^{2} y, x^{4}\right)$

Geometric Representations

* Monomials and Monomial Ideals \rightarrow Staircases
* What is a Newton Polytope?
* What is a Newton Polyhedron?

» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The Newton polyhedron of an ideal $I, N P(I)$, is the convex hull of its staircase.

The staircase of $\left(x^{2} y, x y^{3}, x^{4}\right)$

» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The Newton polyhedron of an ideal $I, N P(I)$, is the convex hull of its staircase.

Newton Polyhedron of $\left(x y^{3}, x^{2} y, x^{4}\right)$

» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The Newton polyhedron of an ideal $I, N P(I)$, is the convex hull of its staircase.

Newton Polyhedron of $\left(x y^{3}, x^{2} y, x^{4}\right)$

》 NP Vs np

$N P(I)$ can be thought of as an extension of $n p(I)$, everything up and to the right.

Newton Polyhedron and Newton Polytope of $I=\left(x y^{3}, x^{2} y, x^{4}\right)$

Real Powers

* What is a Real Power?
* Computing Real Powers

Real Powers

* What is a Real Power?
* Computing Real Powers
» What is a Real Power?

Definition (Real Power)

The real power r of an ideal $I, \overline{I^{r}}$, is the ideal corresponding to the staircase of the lattice points in $r \cdot N P(I)$.
» Example of Real Power

Let's compute $\overline{\left(x y^{3}, x^{2} y, x^{4}\right)^{\frac{1}{2}}}$.
» Example of Real Power

Let's compute $\overline{\left(x y^{3}, x^{2} y, x^{4}\right)^{\frac{1}{2}}}$. We first need to find $\frac{1}{2} \cdot N P(I)$.

Left: $N P(I)$

Right: $\frac{1}{2} \cdot N P(I)$

» Example of Real Power
We now identify the lattice points and draw their staircases.
Lattice points of $\frac{1}{2} \cdot N P\left(x^{4}, x^{2} y, x y^{3}\right)$

» Example of Real Power

We now identify the lattice points and draw their staircases.

» Example of Real Power

We now identify the lattice points and draw their staircases.

The staircase of our lattice points

» Example of Real Power
Thus $\overline{\left(x^{4}, x^{2} y, x y^{3}\right)^{\frac{1}{2}}}=\left(x y, x^{2}\right)$.

The staircase of $\overline{\left(x^{4}, x^{2} y, x y^{3}\right)^{\frac{1}{2}}}=\left(x y, x^{2}\right)$

Real Powers

* What is a Real Power?
* Computing Real Powers
» Why compute the real powers?
» Why compute the real powers?

1. Not much is known about real powers
» Why compute the real powers?
2. Not much is known about real powers
3. Looking for Patterns
4. Not much is known about real powers
5. Looking for Patterns
6. Patterns require lots of examples

» Why compute the real powers?

1. Not much is known about real powers
2. Looking for Patterns
3. Patterns require lots of examples
4. Examples are hard to compute

* computer programs are FASTER than working it out by hand

» Example

Notice that the minimal generators are "close" to the boundary of $N P(I)$.

$$
\frac{1}{2} \cdot N P\left(x^{4}, x^{2} y, x y^{3}\right)
$$

» Example
Could the generators of $r \cdot N P(I)$ be in $r \cdot n p(I)$?

$$
\frac{1}{2} \cdot N P\left(x^{4}, x^{2} y, x y^{3}\right) \text { and } \frac{1}{2} \cdot n p\left(x^{4}, x^{2} y, x y^{3}\right)
$$

» Example
No:(

$$
\frac{1}{3} \cdot N P\left(x^{4}, x^{2} y, x y^{3}\right) \text { and } \frac{1}{3} \cdot n p\left(x^{4}, x^{2} y, x y^{3}\right)
$$

» Bounding Theorem

But very close!

» Bounding Theorem

But very close!

Bounding Theorem (Real Powers Team [Don+21])

Let $r=\frac{p}{q} \in \mathbb{Q}$ and / be a monomial ideal in d variables.
Then the minimal generators of $\overline{I^{r}}$ are within a distance of $\left(d-\frac{1}{q}\right)$ from $r \cdot n p(I)$.

» Bounding Theorem

For $I=\left(x^{4}, x^{2} y, x y^{3}\right)$ and $r=\frac{1}{3}$, minimal generators will be within a distance of $2-\frac{1}{3}$ from $r \cdot n p(I)$.

» Bounding Theorem

For $I=\left(x^{4}, x^{2} y, x y^{3}\right)$ and $r=\frac{1}{3}$, minimal generators will be within a distance of $2-\frac{1}{3}$ from $r \cdot n p(I)$.

Minimal generators of $r \cdot N P(I)$

» Algorithm Steps

1. Find all lattice points within the bounded distance of $r \cdot n p(/)$ (Minkowski Sum)

The bounded distance from $r \cdot n p(I)$

» Algorithm Steps

1. Find all lattice points within the bounded distance of $r \cdot n p(I)$ (Minkowski Sum)

The lattice points within a bounded distance of $r \cdot n p(I)$

» Algorithm Steps

1. Find all lattice points within the bounded distance of $r \cdot n p(/)$ (Minkowski Sum)
2. Compute the ideal corresponding to the staircase of these points

The staircase of $\left(x^{4}, x^{2} y, x y^{3}\right)^{\frac{1}{3}}=\left(x^{2}, x y\right)$

Jumping Numbers

* What is a Jumping Number?
* A reformulation
* Corollaries
* Worked Example

Jumping Numbers

* What is a Jumping Number?
* A reformulation
* Corollaries
* Worked Example
» Jumping Numbers

Right: $\frac{1}{2} \cdot N P(I)$

» What is a Jumping Number?

Definition (Jumping Number)

We say that a number r is a jumping number if $\overline{I^{r}} \neq \overline{I^{r+\epsilon}}$ for all $\epsilon>0$.
» What is a Jumping Number?

Definition (Jumping Number)

We say that a number r is a jumping number if $\overline{I^{r}} \neq \overline{I^{r+\epsilon}}$ for all $\epsilon>0$.

For $I=\left(x^{4}, x^{2} y, x y^{3}\right)$, we have that

* $\frac{1}{2}$ is a jumping number
* $\frac{1}{3}$ is not a jumping number

》 $\frac{1}{2}$ is a Jumping Number

Increasing $\frac{1}{2}$ just a little bit will no longer include the point $(2,0)$. This removes a minimal generator and changes the ideal.

$$
r=\frac{1}{2} \text { vs } r=\frac{5}{8}
$$

》 $\frac{1}{3}$ is not a Jumping Number

* By looking at $r \cdot N P(I)$ we can determine $\overline{I r}$.
* We can see, $\overline{I^{\frac{1}{2}}}=\overline{l^{\frac{1}{3}}}$.

$$
r=\frac{1}{3} \text { vs } r=\frac{1}{2}
$$

Jumping Numbers

* What is a Jumping Number?
* A reformulation
* Corollaries
* Worked Example

» A new perspective

We can describe Newton polyhedron by a system of linear inequalities.

Newton Polyhedron for $\left(x y^{3}, x^{2} y, x^{4}\right)$

» A new perspective

Scaling a Newton polyhedron corresponds to scaling constants in our inequalities.

Newton Polyhedron for $\left(x y^{3}, x^{2} y, x^{4}\right)^{\frac{1}{2}}$

» A new perspective

Notice that $(2,0)$ gives equality in $2 y+x \geq \frac{1}{2} \cdot 4$ and inequality for the rest of our bounding equations.

Newton Polyhedron for $\left(x y^{3}, x^{2} y, x^{4}\right)^{\frac{1}{2}}$

» A new perspective

Theorem (Real Powers Team [Don+21])

$r \in \mathbb{R}$ is a jumping number for a monomial ideal / if and only if there is an integer solution to the bounding inequalities of $r \cdot N P(I)$ which gives equality to one of the (interesting) inequalities.
» Example

With $I=\left(x^{4}, x^{2} y, x y^{3}\right)$, the system of linear inequalities for $I^{\frac{1}{2}}$ is:
» Example

With $I=\left(x^{4}, x^{2} y, x y^{3}\right)$, the system of linear inequalities for $I^{\frac{1}{2}}$ is:

$$
\begin{gathered}
x \geq \frac{1}{2} \\
y+2 x \geq \frac{5}{2} \\
2 y+x \geq 2 \\
y \geq 0
\end{gathered}
$$

» Example

With $I=\left(x^{4}, x^{2} y, x y^{3}\right)$, the system of linear inequalities for $\overline{I^{\frac{1}{2}}}$ is:

$$
\begin{gathered}
x \geq \frac{1}{2} \\
y+2 x \geq \frac{5}{2} \\
2 y+x \geq 2 \\
y \geq 0
\end{gathered}
$$

Notice $x=2, y=0$ is a solution to these inequalities that gives equality in $2 y+x=2$.
» Example

With $I=\left(x^{4}, x^{2} y, x y^{3}\right)$, the system of linear inequalities for $I^{\frac{1}{3}}$ is:

» Example

With $I=\left(x^{4}, x^{2} y, x y^{3}\right)$, the system of linear inequalities for $\overline{I^{\frac{1}{3}}}$ is:

$$
\begin{gathered}
x \geq \frac{1}{3} \\
y+2 x \geq \frac{5}{3} \\
2 y+x \geq \frac{4}{3} \\
y \geq 0
\end{gathered}
$$

With $I=\left(x^{4}, x^{2} y, x y^{3}\right)$, the system of linear inequalities for $\overline{I^{\frac{1}{3}}}$ is:

$$
\begin{gathered}
x \geq \frac{1}{3} \\
y+2 x \geq \frac{5}{3} \\
2 y+x \geq \frac{4}{3} \\
y \geq 0
\end{gathered}
$$

There are no integer solutions since no product and sum of integers is a non-integer.

Jumping Numbers

* What is a Jumping Number?
* A reformulation
* Corollaries
* Worked Example
» Rationality

Using this reformulation, we were able to prove many interesting corollaries:
» Rationality

Using this reformulation, we were able to prove many interesting corollaries:

Rationality (Real Powers
 Team[Don+21])

» Rationality

Using this reformulation, we were able to prove many interesting corollaries:

Rationality (Real Powers
 Team[Don+21])

* All jumping numbers are rational.
» Rationality

Using this reformulation, we were able to prove many interesting corollaries:

Newton Polyhedron for $\left(x y^{3}, x^{2} y, x^{4}\right)$

Rationality (Real Powers
 Team[Don+21])

* All jumping numbers are rational.
* For each $r \in \mathbb{R}_{+}$there exists $r^{\prime} \in \mathbb{Q}$ so that $\overline{I r}=\overline{r^{\prime}}$.

» Linearity

Since $N P(I)$ is a linear system of inequalities, a notion of multiplicity exists for jumping numbers.

» Linearity

Since $N P(I)$ is a linear system of inequalities, a notion of multiplicity exists for jumping numbers.

Linearity Result (Real Powers Team[Don+21])

If r is a jumping number of $/$ then $n r$ is also a jumping number of $/$ for all $n \in \mathbb{N}$.

$$
\frac{1}{2} \cdot N P\left(x y^{3}, x^{2} y, x^{4}\right) \text { and } \frac{3}{2} \cdot N P\left(x y^{3}, x^{2} y, x^{4}\right)
$$

Jumping Numbers

* What is a Jumping Number?
* A reformulation
* Corollaries
* Worked Example
» Restriction of Solutions

For a given ideal, we can restrict the set of possible jumping numbers using the following lemma:

» Restriction of Solutions

For a given ideal, we can restrict the set of possible jumping numbers using the following lemma:

Restriction Lemma

The equation $a x+b y=c$ where a and b are integers and c is not an integer, has no integer solutions.

» Restriction of Solutions

For a given ideal, we can restrict the set of possible jumping numbers using the following lemma:

Restriction Lemma

The equation $a x+b y=c$ where a and b are integers and c is not an integer, has no integer solutions.

For example, $2 y+x=\frac{8}{5}$ has no integer solutions.
» Example

Using these results, we can systematically determine all jumping numbers of a given ideal. We use this to find all jumping numbers of $I=\left(x^{4}, x^{2} y, x y^{3}\right)$ that are less than one.

» Example

Using these results, we can systematically determine all jumping numbers of a given ideal. We use this to find all jumping numbers of $I=\left(x^{4}, x^{2} y, x y^{3}\right)$ that are less than one.

$$
\begin{gathered}
x \geq 1 \\
y+2 x \geq 5 \\
2 y+x \geq 4 \\
y \geq 0
\end{gathered}
$$

» Scaled Inequalities

Scaling our Newton polyhedron by r we get the following system of inequalities:

$$
\begin{gathered}
x \geq r \cdot 1 \\
y+2 x \geq r \cdot 5 \\
2 y+x \geq r \cdot 4 \\
y \geq r \cdot 0
\end{gathered}
$$

» Scaled Inequalities

Scaling our Newton polyhedron by r we get the following system of inequalities:

$$
\begin{gathered}
x \geq r \cdot 1 \\
y+2 x \geq r \cdot 5 \\
2 y+x \geq r \cdot 4 \\
y \geq r \cdot 0
\end{gathered}
$$

The restriction lemma limits our jumping numbers to those of the form: $\frac{n}{5}$ or $\frac{m}{4}$ for $n, m \in \mathbb{N}$.
» Possible Jumping Numbers

So our possible jumping numbers less than 1 are:

$$
\left\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right\} .
$$

» Possible Jumping Numbers

So our possible jumping numbers less than 1 are:

$$
\left\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right\} .
$$

We can now manually check the validity of each of these possible jumping numbers.
» $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

$$
\begin{gathered}
x \geq \frac{2}{5} \\
y+2 x \geq 2 \\
2 y+x \geq \frac{8}{5} \\
y \geq 0
\end{gathered}
$$

» $\frac{2}{5}$ is not a jumping number
We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

$$
\begin{gathered}
x \geq \frac{2}{5} \\
y+2 x \geq 2 \\
2 y+x \geq \frac{8}{5} \\
y \geq 0
\end{gathered}
$$

» $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

$$
\begin{gathered}
x \geq \frac{2}{5} \\
y+2 x \geq 2 \\
2 y+x \geq \frac{8}{5} \\
y \geq 0
\end{gathered}
$$

Since $x \geq \frac{2}{5}$ and $y \geq 0$, our only possible integer solution to $y+2 x \geq 2$ is $x=1, y=0$.

» $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

$$
\begin{gathered}
x \geq \frac{2}{5} \\
y+2 x \geq 2 \\
2 y+x \geq \frac{8}{5} \\
y \geq 0
\end{gathered}
$$

Since $x \geq \frac{2}{5}$ and $y \geq 0$, our only possible integer solution to $y+2 x \geq 2$ is $x=1, y=0$. But $2(0)+(1) \nsucceq \frac{8}{5}$ so there are no solutions and $\frac{2}{5}$ is not a jumping number.

» $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

$$
\begin{gathered}
x \geq \frac{2}{5} \\
y+2 x \geq 2 \\
2 y+x \geq \frac{8}{5} \\
y \geq 0
\end{gathered}
$$

Since $x \geq 1$ and $y \geq 0$, our only possible integer solution to $y+2 x \geq 2$ is $x=1, y=0$. But $2(0)+(1) \nsucceq \frac{8}{5}$ so there are no solutions and $\frac{2}{5}$ is not a jumping number.
» Jumping Numbers of $\left(x^{4}, x^{2} y, x y^{3}\right)$

Doing this for every possibility we find the jumping numbers of $\left(x^{4}, x^{2} y, x y^{3}\right)$ less than 1 to be:
» Jumping Numbers of $\left(x^{4}, x^{2} y, x y^{3}\right)$

Doing this for every possibility we find the jumping numbers of $\left(x^{4}, x^{2} y, x y^{3}\right)$ less than 1 to be:

$$
\left\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{3}{5}, \frac{4}{5}\right\} .
$$

» Jumping Numbers of $\left(x^{4}, x^{2} y, x y^{3}\right)$

Doing this for every possibility we find the jumping numbers of $\left(x^{4}, x^{2} y, x y^{3}\right)$ less than 1 to be:

$$
\left\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{3}{5}, \frac{4}{5}\right\} .
$$

In fact, $\frac{1}{5}$ and $\frac{2}{5}$ are the only possible jumping numbers which are not jumping numbers. So the full set of jumping numbers of I is:

» Jumping Numbers of $\left(x^{4}, x^{2} y, x y^{3}\right)$

Doing this for every possibility we find the jumping numbers of $\left(x^{4}, x^{2} y, x y^{3}\right)$ less than 1 to be:

$$
\left\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{3}{5}, \frac{4}{5}\right\} .
$$

In fact, $\frac{1}{5}$ and $\frac{2}{5}$ are the only possible jumping numbers which are not jumping numbers. So the full set of jumping numbers of I is:

$$
\left\{\frac{n}{4}, \frac{m}{5}: n \geq 1, m \geq 3\right\}
$$

Conclusion

* Jumping Numbers Algorithm
* Jumping Numbers Algorithm
* Numerical Semi-Groups
* Jumping Numbers Algorithm
* Numerical Semi-Groups
* Jumping Numbers for classes of ideals (pure, squarefree, etc.)

Sturmfels Miller. Combinatorial Commutative Algebra. Springer, 2005.

Pratik Dongre et al. Real powers of monomial ideals. 2021. arXiv: 2101.10462 [math.AC].

```
» Thank You!
```


Any Questions?

