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» What is a Monomial Ideal?
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* Monomials and Monomial Ideals — Staircases
x What is a Newton Polytope?
* What is a Newton Polyhedron?
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» Lattice Points

Green: Lattice Point, Red: Not a Lattice Point
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» Monomials — Lattice Points

+ Each monomial has a corresponding lattice point.

+ A monomial x?y? corresponds to (a, b)
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» Generators — Lattice Points

+* Monomials ideals may seem complicated, but pictures are not!
+ For the ideal I = (xy3, x%y, x*), the generators are (1,3), (2,1)
and (4,0).
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» Divisibility

+* Moving up and to the right corresponds to multiplying by x and y

respectively
+ Monomials divisible
it

by a generator are those up and to the right of
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» |deals — Staircases

Filling in these boxes, we get a monomial ideal’s corresponding

staircasel.

The staircase of (x2y, xy?, x*)

5

!See [Mil05, Chapter 3] for lots of interesting properties of these staircases
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» Points — Ideals

Given a set of points, we can construct a monomial ideal by looking at
the staircase the points generate.
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» Points — Ideals
Given a set of points, we can construct a monomial ideal by looking at
the staircase the points generate.

The staircase of (xy, x%,x%y®) = (xy, x?)

5
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» Convexity

Left: Convex Right: Not Convex
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» Convex Hull

This is the space formed by "wrapping a rubber band around K".

The Convex Hull of K
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» What is a Newton Polytope?

Generators of (xy?, x%y, x*)
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» What is a Newton Polytope?

Newton Polytope of (xy?, x%y, x*)
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» What is a Newton Polyhedron?

o

The staircase of (x2y, xy*, x*)

5
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» What is a Newton Polyhedron?

Newton Polyhedron of (xy?, x%y, x*)
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» What is a Newton Polyhedron?

Newton Polyhedron of (xy?, x%y, x*)
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» NP Vs np

NP(I) can be thought of as an extension of np(/), everything up and to
the right.
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» What is a Real Power?
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» Example of Real Power

1
Let's compute (xy3, x2y, x*)z.
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» Example of Real Power

1
Let's compute (xy3, x2y, x*)2

. We first need to find 5 - NP(/).
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» Example of Real Power

We now identify the lattice points and draw their staircases.
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» Example of Real Power

We now identify the lattice points and draw their staircases.

The staircase of our lattice points

3
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» Example of Real Power

Thus (x4, x2y, xy3)2 = (xy,x%).

The staircase of (x4,x2y,xy3ﬁ = (xy, x?)

3
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» Why compute the real powers?

. Not much is known about real powers
. Looking for Patterns

1
2
3. Patterns require lots of examples
4. Examples are hard to compute

« computer programs are FASTER than working it out by hand
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» Example

Notice that the minimal generators are "close" to the boundary of
NP(I).
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» Example

Could the generators of r- NP(/) be in r- np(/)?
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» Example
No:(

3
2
>
1 @
0 " 4
0 1 2

[33/60]



Real Powers
00000@0000

» Bounding Theorem

But very close!
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» Bounding Theorem

For I = (x*,x%y,xy3) and r = % minimal generators will be within a
distance of 2 — £ from r - np(!).
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» Bounding Theorem

For I = (x*, x%y,xy?) and r = % minimal generators will be within a
distance of 2 — £ from r - np(!).
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» Algorithm Steps

1. Find all lattice points within the bounded distance of r - np(/)
(Minkowski Sum)

The bounded distance from r - np(/)

3
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» Algorithm Steps

1. Find all lattice points within the bounded distance of r - np(/)
(Minkowski Sum)

The lattice points within a bounded distance of r - np(/)
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» Algorithm Steps

1. Find all lattice points within the bounded distance of r - np(/)
(Minkowski Sum)
2. Compute the ideal corresponding to the staircase of these points

The staircase of (x*,xzy.xy"“)% = (x2, xy)

3
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* A reformulation

* (orollaries

* Worked Example
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» Jumping Numbers
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» What is a Jumping Number?
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» What is a Jumping Number?

For I = (x* x%y, xy?), we have that

1
2
1
3

% 3 is a jumping number

% z IS not a jumping number
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» 3 Is 3 Jumping Number

Increasing %just a little bit will no longer include the point (2,0). This
removes a minimal generator and changes the ideal.
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» 3 Is not 3 Jumping Number

+ By looking at r - NP(/) we can determine /".

=

1
* We can see, [2 = |3,
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* What is a Jumping Number?
* A reformulation

* (orollaries

* Worked Example



Jumping Numbers
0®00000

» Anew perspective

We can describe Newton polyhedron by a system of linear inequalities.

—_— x>1
—_—y+2x>5
4 —_2y+x2>4
— y20

[43/60]



Jumping Numbers
[e]e] Yololele}

» Anew perspective

Scaling a Newton polyhedron corresponds to scaling constants in our
inequalities.

)

— x>l
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—2y+x2%<4
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» Anew perspective

Notice that (2,0) gives equality in 2y + x > % -4 and inequality for the

rest of our bounding equations.

5
— 1
x2§<1
4 —y+2x>35
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» A new perspective
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» Example

With | = (x*, x2y, xy3), the system of linear inequalities for I3 is:
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» Example

With | = (x%, x2y, xy3), the system of linear inequalities for I3 is:
Y, Xy

Notice x = 2,y = 0 is a solution to these inequalities that gives equality
in 2y +x = 2.
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» Example

With | = (x*, x2y, xy3), the system of linear inequalities for I5 is:

S
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X X Vv
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» Example

With | = (x*, x2y, xy3), the system of linear inequalities for I5 is:

<
+  x
SV,
I\ LW =
W i | Ot

[\)
<
<+
v x
oV

There are no integer solutions since no product and sum of integers is a
non-integer.

[48/60]



Jumping Numbers

* What is a Jumping Number?
* A reformulation

* (Corollaries

* Worked Example



Jumping Numbers

» Rationality

Using this reformulation, we were able to prove many interesting
corollaries:
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» Rationality

Using this reformulation, we were able to prove many interesting
corollaries:

Newton Polyhedron for (xy?, x%y, x)

5
_—x2>1
—y+2x>5

4 —_—12y+x>4
— y20
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» Linearity

Since NP(/) is a linear system of inequalities, a notion of multiplicity
exists for jumping numbers.
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» Linearity

Since NP(/) is a linear system of inequalities, a notion of multiplicity
exists for jumping numbers.

Linearity Result (Real Powers Team[Don+21])

- NP(xy®, x*y, x*) and

- NP(xy®, x%y, x*)

N|=
(SIS

5 8
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’ \
> > 4 \
2 \
\ 2
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» Restriction of Solutions

For a given ideal, we can restrict the set of possible jumping numbers
using the following lemma:
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» Restriction of Solutions

For a given ideal, we can restrict the set of possible jumping numbers
using the following lemma:

For example, 2y + x = % has no integer solutions.
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» Example

Using these results, we can systematically determine all jumping
numbers of a given ideal. We use this to find all jumping numbers of
I = (x* x%y, xy3) that are less than one.
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» Example

Using these results, we can systematically determine all jumping
numbers of a given ideal. We use this to find all jumping numbers of
I = (x* x%y, xy3) that are less than one.

5
x>1 A
y+2x>5 3
2y +x >4 N
y=>0 !
0
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» Scaled Inequalities

Scaling our Newton polyhedron by r we get the following system of
inequalities:

x>r-1
y+2x>r-5
2y +x>r-4

y>r-0
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» Scaled Inequalities

Scaling our Newton polyhedron by r we get the following system of
inequalities:

x>r-1
y+2x>r-5
2y +x>r-4

y>r-0

The restriction lemma limits our jumping numbers to those of the form:
g or ¢ for n,meN.

[53/60]
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» Possible Jumping Numbers

So our possible jumping numbers less than 1 are:
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» Possible Jumping Numbers

So our possible jumping numbers less than 1 are:

1231234

{4’ 4’4’5 5’5’ 5}.
We can now manually check the validity of each of these possible
jumping numbers.
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» 2 s not 3 jumping number

We perform the calculation to find that % is not a jumping number.
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We perform the calculation to find that % is not a jumping number.
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» 2 s not 3 jumping number

We perform the calculation to find that % is not a jumping number.

3

|
y20 \

0

0 1 2 3
X

Since x > % and y > 0, our only possible integer solution to y + 2x > 2
isx=1y=0.
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» 2 s not 3 jumping number

We perform the calculation to find that % is not a jumping number.

3

|
y20 \

0

0 1 2 al

Since x > % and y > 0, our only possible integer solution to y + 2x > 2
is x =1,y = 0. But 2(0) + (1) # £ so there are no solutions and 2 is
not a jumping number.
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» 2 s not 3 jumping number

We perform the calculation to find that % is not a jumping number.

3

y=0 \

0

0 1 2 3
X

Since x > 1 and y > 0, our only possible integer solution to y + 2x > 2
isx =1,y =0. But 2(0) + (1) # % so there are no solutions and % is
not a jumping number.
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» Jumping Numbers of (x4, x2y, xy?)

Doing this for every possibility we find the jumping numbers of
(x*, x%y, xy3) less than 1 to be:
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» Jumping Numbers of (x4, x2y, xy?)

Doing this for every possibility we find the jumping numbers of
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In fact, % and % are the only possible jumping numbers which are not
jumping numbers. So the full set of jumping numbers of / is:
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» Jumping Numbers of (x4, x2y, xy?)

Doing this for every possibility we find the jumping numbers of
(x*, x%y, xy3) less than 1 to be:

Trrss
In fact, % and % are the only possible jumping numbers which are not
jumping numbers. So the full set of jumping numbers of / is:

10 on>1 > 3}
4,5.n_,m_ .

[57/60]
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» Future Work

* Jumping Numbers Algorithm
* Numerical Semi-Groups

« Jumping Numbers for classes of ideals (pure, squarefree, etc.)
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https://arxiv.org/abs/2101.10462

» Thank You!

Any Questions?
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