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» What is a monomial?

Definition (Monomial)

A monomial is a product of variables.

Examples

x4, x2y and xyz are monomials.

Non-examples

x + y and xy − z are polynomials, not monomials.
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» What is a Monomial Ideal?

Definition (Monomial Ideal *Spooky*)

Let M = {m1, . . . ,mk} be a set of monomials. The ideal
generated by M, written I = (m1, . . . ,mk), is the set
containing all polynomials which have the form
p1m1 + . . .+ pkmk where each pi is a polynomial.

[4/60]



Geometric Representations
∗ Monomials and Monomial Ideals→ Staircases
∗ What is a Newton Polytope?
∗ What is a Newton Polyhedron?



Geometric Representations
∗ Monomials and Monomial Ideals→ Staircases
∗ What is a Newton Polytope?
∗ What is a Newton Polyhedron?



Background Geometric Representations Real Powers Jumping Numbers Conclusion References

» Lattice Points

Definition (Lattice Point)

A point x ∈ Rn is a lattice point if it has integer coordinates

Green: Lattice Point, Red: Not a Lattice Point
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» Monomials→ Lattice Points

∗ Each monomial has a corresponding lattice point.
∗ A monomial xayb corresponds to (a, b)

Example

In the xy plane,

xy3 → (1, 3)

x2y → (2, 1)

x4 → (4, 0)

[6/60]
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» Generators→ Lattice Points
∗ Monomials ideals may seem complicated, but pictures are not!

∗ For the ideal I = (xy3, x2y , x4), the generators are (1, 3), (2, 1)
and (4, 0).

Generators of the ideal I = (xy3, x2y , x4)
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» Divisibility

∗ Monomials in an ideal are those divisible by some of its generators

∗ x2y2 = y · x2y ∈ (xy3, x2y , x4)

∗ x3y = x · x2y ∈ (xy3, x2y , x4)
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» Divisibility
∗ Moving up and to the right corresponds to multiplying by x and y

respectively
∗ Monomials divisible by a generator are those up and to the right of

it

Monomials divisible by x2y
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» Divisibility
∗ Moving up and to the right corresponds to multiplying by x and y

respectively
∗ Monomials divisible by a generator are up and to the right of it

Monomials divisible by x2y or xy3
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» Ideals→ Staircases
Filling in these boxes, we get a monomial ideal’s corresponding
staircase1.

The staircase of (x2y , xy3, x4)
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1See [Mil05, Chapter 3] for lots of interesting properties of these staircases
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» Points→ Ideals
Given a set of points, we can construct a monomial ideal by looking at
the staircase the points generate.

The points (1, 1), (2, 0), (2, 3)
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» Points→ Ideals
Given a set of points, we can construct a monomial ideal by looking at
the staircase the points generate.

The staircases of (1, 1), (2, 0), (2, 3)
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» Points→ Ideals
Given a set of points, we can construct a monomial ideal by looking at
the staircase the points generate.

The staircase of (xy , x2, x2y3) = (xy , x2)
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» Convexity

Definition (Convex)

A space K ⊆ Rn is convex if ∀a, b ∈ K , the line between a
and b is contained in K .

Left: Convex Right: Not Convex
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» Convex Hull
Definition (Convex Hull)

The convex hull of K ⊆ Rn is the smallest convex space
containing K .

This is the space formed by "wrapping a rubber band around K".

The Convex Hull of K
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» What is a Newton Polytope?

Definition (Newton Polytope)

The Newton polytope of an ideal I, np(I), is the convex hull
of its generators.

Generators of (xy3, x2y , x4)

0 1 2 3 4 5
0

1

2

3

4

5

x

y

[18/60]



Background Geometric Representations Real Powers Jumping Numbers Conclusion References

» What is a Newton Polytope?

Definition (Newton Polytope)

The Newton polytope of an ideal I, np(I), is the convex hull
of its generators.

Newton Polytope of (xy3, x2y , x4)
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» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The Newton polyhedron of an ideal I, NP(I), is the convex
hull of its staircase.

The staircase of (x2y , xy3, x4)
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» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The Newton polyhedron of an ideal I, NP(I), is the convex
hull of its staircase.
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» What is a Newton Polyhedron?
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» NP vs np
NP(I) can be thought of as an extension of np(I), everything up and to
the right.

Newton Polyhedron and Newton
Polytope of I = (xy3, x2y , x4)
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» What is a Real Power?

Definition (Real Power)

The real power r of an ideal I, I r , is the ideal corresponding
to the staircase of the lattice points in r · NP(I).

[24/60]
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» Example of Real Power

Let’s compute (xy3, x2y , x4)
1
2 .

We first need to find 1
2 · NP(I).

Left: NP(I) Right: 1
2
· NP(I)
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» Example of Real Power

We now identify the lattice points and draw their staircases.

Lattice points of 1
2
· NP(x4, x2y , xy3)
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» Example of Real Power

We now identify the lattice points and draw their staircases.

Staircases of 1
2
· NP(x4, x2y , xy3)
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» Example of Real Power

We now identify the lattice points and draw their staircases.

The staircase of our lattice points
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» Example of Real Power

Thus (x4, x2y , xy3)
1
2 = (xy , x2).

The staircase of (x4, x2y , xy3)
1
2 = (xy , x2)
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» Why compute the real powers?

1. Not much is known about real powers
2. Looking for Patterns
3. Patterns require lots of examples
4. Examples are hard to compute

∗ computer programs are FASTER than working it out by hand

[30/60]
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» Example
Notice that the minimal generators are "close" to the boundary of
NP(I).

1
2
· NP(x4, x2y , xy3)
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» Example

Could the generators of r · NP(I) be in r · np(I)?

1
2
· NP(x4, x2y , xy3) and 1

2
· np(x4, x2y , xy3)
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» Example

No:(

1
3
· NP(x4, x2y , xy3) and 1

3
· np(x4, x2y , xy3)
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» Bounding Theorem

But very close!

Bounding Theorem (Real Powers Team [Don+21])

Let r = p
q ∈ Q and I be a monomial ideal in d variables.

Then the minimal generators of I r are within a distance of
(d − 1

q ) from r · np(I).

[34/60]
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» Bounding Theorem

For I = (x4, x2y , xy3) and r = 1
3 , minimal generators will be within a

distance of 2− 1
3 from r · np(I).

Minimal generators of r · NP(I)
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» Algorithm Steps

1. Find all lattice points within the bounded distance of r · np(I)
(Minkowski Sum)

The bounded distance from r · np(I)
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» Algorithm Steps

1. Find all lattice points within the bounded distance of r · np(I)
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» Algorithm Steps
1. Find all lattice points within the bounded distance of r · np(I)

(Minkowski Sum)
2. Compute the ideal corresponding to the staircase of these points

The staircase of (x4, x2y , xy3)
1
3 = (x2, xy)
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» Jumping Numbers

Left: NP(I) Right: 1
2
· NP(I)
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» What is a Jumping Number?

Definition (Jumping Number)

We say that a number r is a jumping number if I r ̸= I r+ϵ for
all ϵ > 0.

For I = (x4, x2y , xy3), we have that
∗ 1

2 is a jumping number
∗ 1

3 is not a jumping number

[40/60]
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» 1
2

is a Jumping Number

Increasing 1
2 just a little bit will no longer include the point (2, 0). This

removes a minimal generator and changes the ideal.
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» 1
3

is not a Jumping Number

∗ By looking at r · NP(I) we can determine I r .

∗ We can see, I 1
2 = I 1

3 .
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» A new perspective

We can describe Newton polyhedron by a system of linear inequalities.

Newton Polyhedron for (xy3, x2y , x4)
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y + 2x ≥ 5
2y + x ≥ 4

y ≥ 0

[43/60]
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» A new perspective

Scaling a Newton polyhedron corresponds to scaling constants in our
inequalities.

Newton Polyhedron for (xy3, x2y , x4)
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» A new perspective

Notice that (2, 0) gives equality in 2y + x ≥ 1
2 · 4 and inequality for the

rest of our bounding equations.

Newton Polyhedron for (xy3, x2y , x4)
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» A new perspective

Theorem (Real Powers Team [Don+21])

r ∈ R is a jumping number for a monomial ideal I if and only
if there is an integer solution to the bounding inequalities of
r · NP(I) which gives equality to one of the (interesting)
inequalities.

[46/60]
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» Example

With I = (x4, x2y , xy3), the system of linear inequalities for I 1
2 is:

x ≥ 1

2

y + 2x ≥ 5

2
2y + x ≥ 2

y ≥ 0

Notice x = 2, y = 0 is a solution to these inequalities that gives equality
in 2y + x = 2.

[47/60]
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» Example

With I = (x4, x2y , xy3), the system of linear inequalities for I 1
3 is:

x ≥ 1

3

y + 2x ≥ 5

3

2y + x ≥ 4

3
y ≥ 0

There are no integer solutions since no product and sum of integers is a
non-integer.

[48/60]
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» Rationality

Using this reformulation, we were able to prove many interesting
corollaries:

Rationality (Real Powers
Team[Don+21])

∗ All jumping numbers are
rational.

∗ For each r ∈ R+ there
exists r ′ ∈ Q so that
I r = I r ′ .

Newton Polyhedron for (xy3, x2y , x4)
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corollaries:

Rationality (Real Powers
Team[Don+21])

∗ All jumping numbers are
rational.

∗ For each r ∈ R+ there
exists r ′ ∈ Q so that
I r = I r ′ .
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» Linearity
Since NP(I) is a linear system of inequalities, a notion of multiplicity
exists for jumping numbers.

Linearity Result (Real Powers Team[Don+21])

If r is a jumping number of I then nr is also a jumping
number of I for all n ∈ N.

1
2
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» Restriction of Solutions

For a given ideal, we can restrict the set of possible jumping numbers
using the following lemma:

Restriction Lemma
The equation ax + by = c where a and b are integers and c
is not an integer, has no integer solutions.

For example, 2y + x = 8
5 has no integer solutions.

[51/60]
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» Example

Using these results, we can systematically determine all jumping
numbers of a given ideal. We use this to find all jumping numbers of
I = (x4, x2y , xy3) that are less than one.

x ≥ 1
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2y + x ≥ 4

y ≥ 0
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» Scaled Inequalities

Scaling our Newton polyhedron by r we get the following system of
inequalities:

x ≥ r · 1
y + 2x ≥ r · 5
2y + x ≥ r · 4

y ≥ r · 0

The restriction lemma limits our jumping numbers to those of the form:
n
5 or m

4 for n,m ∈ N.
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» Possible Jumping Numbers

So our possible jumping numbers less than 1 are:

{1
4
,
2

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
}.

We can now manually check the validity of each of these possible
jumping numbers.
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» 2
5

is not a jumping number

We perform the calculation to find that 2
5 is not a jumping number.

x ≥ 2

5
y + 2x ≥ 2

2y + x ≥ 8

5
y ≥ 0

0 1 2 3
0

1

2

3

x

y

Since x ≥ 2
5 and y ≥ 0, our only possible integer solution to y + 2x ≥ 2

is x = 1, y = 0. But 2(0) + (1) ̸≥ 8
5 so there are no solutions and 2

5 is
not a jumping number.

[55/60]
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» Jumping Numbers of (x4, x2y, xy3)

Doing this for every possibility we find the jumping numbers of
(x4, x2y , xy3) less than 1 to be:

{1
4
,
2

4
,
3

4
,
3

5
,
4

5
}.

In fact, 1
5 and 2

5 are the only possible jumping numbers which are not
jumping numbers. So the full set of jumping numbers of I is:

{n
4
,
m
5

: n ≥ 1,m ≥ 3}.
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» Future Work

∗ Jumping Numbers Algorithm

∗ Numerical Semi-Groups
∗ Jumping Numbers for classes of ideals (pure, squarefree, etc.)
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» Thank You!

Any Questions?

[60/60]


	Background
	What is a Monomial?
	What is a Monomial Ideal?

	Geometric Representations
	Monomials and Monomial Ideals  Staircases
	What is a Newton Polytope?
	What is a Newton Polyhedron?

	Real Powers
	What is a Real Power?
	Computing Real Powers

	Jumping Numbers
	What is a Jumping Number?
	A reformulation
	Corollaries
	Worked Example

	Conclusion
	References

