Real Powers of Monomial Ideals

by Josiah Lim, Ethan Roy and Ethan Partida on Mar 14, 2021

» Outline

- Background
- * Geometric Representations
- * Real Powers
- * Jumping numbers

Background

- * What is a Monomial?
- * What is a Monomial Ideal?

Background

- * What is a Monomial?
- * What is a Monomial Ideal?

» What is a monomial?

Definition (Monomial)

A monomial is a product of variables.

» What is a monomial?

Definition (Monomial)

A monomial is a product of variables.

Examples

 x^4 , x^2y and xyz are monomials.

» What is a monomial?

Definition (Monomial)

A monomial is a product of variables.

Examples

 x^4 , x^2y and xyz are monomials.

Non-examples

x + y and xy - z are polynomials, not monomials.

Background

- * What is a Monomial?
- * What is a Monomial Ideal?

» What is a Monomial Ideal?

Definition (Monomial Ideal *Spooky*)

Let $M = \{m_1, \ldots, m_k\}$ be a set of monomials. The ideal generated by M, written $I = (m_1, \ldots, m_k)$, is the set containing all polynomials which have the form $p_1m_1 + \ldots + p_km_k$ where each p_i is a polynomial.

Geometric Representations

- * Monomials and Monomial Ideals ightarrow Staircases
- * What is a Newton Polytope?
- * What is a Newton Polyhedron?

Geometric Representations

- * Monomials and Monomial Ideals ightarrow Staircases
- * What is a Newton Polytope?
- * What is a Newton Polyhedron?

» Lattice Points

Definition (Lattice Point)

A point $x \in \mathbb{R}^n$ is a lattice point if it has integer coordinates

Green: Lattice Point, Red: Not a Lattice Point

» Monomials \rightarrow Lattice Points

- * Each monomial has a corresponding lattice point.
- * A monomial $x^a y^b$ corresponds to (a, b)

» Monomials \rightarrow Lattice Points

- * Each monomial has a corresponding lattice point.
- * A monomial $x^a y^b$ corresponds to (a, b)

» Generators \rightarrow Lattice Points

* Monomials ideals may seem complicated, but pictures are not!

» Generators \rightarrow Lattice Points

- * Monomials ideals may seem complicated, but pictures are not!
- * For the ideal $I = (xy^3, x^2y, x^4)$, the generators are (1,3), (2,1) and (4,0).

Generators of the ideal $I = (xy^3, x^2y, x^4)$

- » Divisibility
 - * Monomials in an ideal are those divisible by some of its generators

» Divisibility

- * Monomials in an ideal are those divisible by some of its generators
- * $x^2y^2 = y \cdot x^2y \in (xy^3, x^2y, x^4)$ * $x^3y = x \cdot x^2y \in (xy^3, x^2y, x^4)$

» Divisibility

- * Monomials in an ideal are those divisible by some of its generators
- * $x^2y^2 = y \cdot x^2y \in (xy^3, x^2y, x^4)$ * $x^3y = x \cdot x^2y \in (xy^3, x^2y, x^4)$

- » Divisibility
 - $\ast\,$ Moving up and to the right corresponds to multiplying by x and y respectively
 - Monomials divisible by a generator are those up and to the right of it

Monomials divisible by x^2y

- » Divisibility
 - * Moving up and to the right corresponds to multiplying by x and y respectively
 - \ast Monomials divisible by a generator are up and to the right of it

Monomials divisible by x^2y or xy^3

- » Divisibility
 - * Moving up and to the right corresponds to multiplying by x and y respectively
 - * Monomials divisible by a generator are up and to the right of it

Monomials divisible by x^2y , xy^3 or x^4

» Ideals \rightarrow Staircases

Filling in these boxes, we get a monomial ideal's corresponding staircase¹.

¹See [Mil05, Chapter 3] for lots of interesting properties of these staircases

» Points \rightarrow Ideals

Given a set of points, we can construct a monomial ideal by looking at the staircase the points generate.

 \searrow 2 1 0 1 2 3 4 5

The points (1,1),(2,0),(2,3) .

» Points \rightarrow Ideals

Given a set of points, we can construct a monomial ideal by looking at the staircase the points generate.

» Points \rightarrow Ideals

Given a set of points, we can construct a monomial ideal by looking at the staircase the points generate.

Geometric Representations

- * Monomials and Monomial Ideals ightarrow Staircases
- * What is a Newton Polytope?
- * What is a Newton Polyhedron?

» Convexity

Definition (Convex)

A space $K \subseteq \mathbb{R}^n$ is convex if $\forall a, b \in K$, the line between a and b is contained in K.

Right: Not Convex

» Convex Hull

Definition (Convex Hull)

The convex hull of $K \subseteq \mathbb{R}^n$ is the smallest convex space containing K.

» Convex Hull

Definition (Convex Hull)

The convex hull of $K \subseteq \mathbb{R}^n$ is the smallest convex space containing K.

This is the space formed by "wrapping a rubber band around K".

The Convex Hull of K

» What is a Newton Polytope?

Definition (Newton Polytope)

The Newton polytope of an ideal I, np(I), is the convex hull of its generators.

Generators of (xy^3, x^2y, x^4)

» What is a Newton Polytope?

Definition (Newton Polytope)

The Newton polytope of an ideal I, np(I), is the convex hull of its generators.

Newton Polytope of (xy^3, x^2y, x^4)

Geometric Representations

- * Monomials and Monomial Ideals ightarrow Staircases
- * What is a Newton Polytope?
- * What is a Newton Polyhedron?

» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The Newton polyhedron of an ideal I, NP(I), is the convex hull of its staircase.

The staircase of (x^2y, xy^3, x^4)

» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The Newton polyhedron of an ideal I, NP(I), is the convex hull of its staircase.

Newton Polyhedron of (xy^3, x^2y, x^4)

» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The Newton polyhedron of an ideal I, NP(I), is the convex hull of its staircase.

Newton Polyhedron of (xy^3, x^2y, x^4)

» NP VS np

NP(I) can be thought of as an extension of np(I), everything up and to the right.

Newton Polyhedron and Newton Polytope of $I = (xy^3, x^2y, x^4)$

Real Powers

- * What is a Real Power?
- * Computing Real Powers

Real Powers

- * What is a Real Power?
- * Computing Real Powers

» What is a Real Power?

Definition (Real Power)

The real power r of an ideal I, $\overline{I^r}$, is the ideal corresponding to the staircase of the lattice points in $r \cdot NP(I)$.

» Example of Real Power

Let's compute $(xy^3, x^2y, x^4)^{\frac{1}{2}}$.

» Example of Real Power

Let's compute $(xy^3, x^2y, x^4)^{\frac{1}{2}}$. We first need to find $\frac{1}{2} \cdot NP(I)$.

» Example of Real Power

We now identify the lattice points and draw their staircases.

 \geq

attice points of $rac{1}{2}\cdot \textit{NP}(x^4,x^2y,xy^3)$

» Example of Real Power

We now identify the lattice points and draw their staircases.

aircases of $\frac{1}{2} \cdot NP(x^4, x^2y, xy^3)$

» Example of Real Power

We now identify the lattice points and draw their staircases.

The staircase of our lattice points

» Example of Real Power

Thus $\overline{(x^4, x^2y, xy^3)^{\frac{1}{2}}} = (xy, x^2).$

The staircase of $\overline{(x^4,x^2y,xy^3)^{rac{1}{2}}}=(xy,x^2)$

Real Powers

- * What is a Real Power?
- * Computing Real Powers

» Why compute the real powers?

1. Not much is known about real powers

- 1. Not much is known about real powers
- 2. Looking for Patterns

- 1. Not much is known about real powers
- 2. Looking for Patterns
- 3. Patterns require lots of examples

- 1. Not much is known about real powers
- 2. Looking for Patterns
- 3. Patterns require lots of examples
- 4. Examples are hard to compute
 - \ast computer programs are FASTER than working it out by hand

» Example

Notice that the minimal generators are "close" to the boundary of NP(I).

» Example

Could the generators of $r \cdot NP(I)$ be in $r \cdot np(I)$?

 $rac{1}{2}\cdot \textit{NP}(x^4,x^2y,xy^3)$ and $rac{1}{2}\cdot \textit{np}(x^4,x^2y,xy^3)$

» Example

No:(

» Bounding Theorem

But very close!

» Bounding Theorem

But very close!

Bounding Theorem (Real Powers Team [Don+21])

Let $r = \frac{p}{q} \in \mathbb{Q}$ and I be a monomial ideal in d variables. Then the minimal generators of $\overline{I^r}$ are within a distance of $(d - \frac{1}{a})$ from $r \cdot np(I)$.

» Bounding Theorem

For $I = (x^4, x^2y, xy^3)$ and $r = \frac{1}{3}$, minimal generators will be within a distance of $2 - \frac{1}{3}$ from $r \cdot np(I)$.

» Bounding Theorem

For $I = (x^4, x^2y, xy^3)$ and $r = \frac{1}{3}$, minimal generators will be within a distance of $2 - \frac{1}{3}$ from $r \cdot np(I)$.

Minimal generators of $r \cdot NP(I)$

- » Algorithm Steps
 - 1. Find all lattice points within the bounded distance of $r \cdot np(I)$ (Minkowski Sum)

bounded distance from $r \cdot np(I)$

- Background Geometric Representations Real Powers Jumping Numbers Conclusion References
 - » Algorithm Steps
 - 1. Find all lattice points within the bounded distance of $r \cdot np(I)$ (Minkowski Sum)

The lattice points within a bounded distance of $r \cdot np(I)$

» Algorithm Steps

- 1. Find all lattice points within the bounded distance of $r \cdot np(I)$ (Minkowski Sum)
- 2. Compute the ideal corresponding to the staircase of these points

The staircase of $(x^4,x^2y,xy^3)^{1\over 3}=(x^2,xy)$

Jumping Numbers

- * What is a Jumping Number?
- * A reformulation
- * Corollaries
- * Worked Example

Jumping Numbers

- * What is a Jumping Number?
- * A reformulation
- * Corollaries
- * Worked Example

» Jumping Numbers

» What is a Jumping Number?

Definition (Jumping Number)

We say that a number r is a jumping number if $\overline{I^r} \neq \overline{I^{r+\epsilon}}$ for all $\epsilon > 0$.

» What is a Jumping Number?

Definition (Jumping Number)

We say that a number r is a jumping number if $\overline{I^r} \neq \overline{I^{r+\epsilon}}$ for all $\epsilon > 0$.

For
$$I = (x^4, x^2y, xy^3)$$
, we have that

- * $\frac{1}{2}$ is a jumping number
- * $\frac{1}{3}$ is not a jumping number

» $rac{1}{2}$ is a Jumping Number

Increasing $\frac{1}{2}$ just a little bit will no longer include the point (2,0). This removes a minimal generator and changes the ideal.

[41/60]

Background

c Representations Real Powers Jumping Numbers Conclusion Refere

- » $\frac{1}{3}$ is not a Jumping Number
 - * By looking at $r \cdot NP(I)$ we can determine $\overline{I^r}$.
 - * We can see, $\overline{I^{\frac{1}{2}}} = \overline{I^{\frac{1}{3}}}$.

Jumping Numbers

- * What is a Jumping Number?
- * A reformulation
- * Corollaries
- * Worked Example

» A new perspective

We can describe Newton polyhedron by a system of linear inequalities.

Newton Polyhedron for (xy^3, x^2y, x^4)

» A new perspective

Scaling a Newton polyhedron corresponds to scaling constants in our inequalities.

» A new perspective

Notice that (2,0) gives equality in $2y + x \ge \frac{1}{2} \cdot 4$ and inequality for the rest of our bounding equations.

» A new perspective

Theorem (Real Powers Team [Don+21])

 $r \in \mathbb{R}$ is a jumping number for a monomial ideal I if and only if there is an integer solution to the bounding inequalities of $r \cdot NP(I)$ which gives equality to one of the (interesting) inequalities.

With $I = (x^4, x^2y, xy^3)$, the system of linear inequalities for $\overline{I^{\frac{1}{2}}}$ is:

With $I = (x^4, x^2y, xy^3)$, the system of linear inequalities for $\overline{I^{\frac{1}{2}}}$ is:

$$x \ge \frac{1}{2}$$
$$y + 2x \ge \frac{5}{2}$$
$$2y + x \ge 2$$
$$y \ge 0$$

With $I = (x^4, x^2y, xy^3)$, the system of linear inequalities for $I^{\frac{1}{2}}$ is:

$$x \ge \frac{1}{2}$$
$$y + 2x \ge \frac{5}{2}$$
$$2y + x \ge 2$$
$$y \ge 0$$

Notice x = 2, y = 0 is a solution to these inequalities that gives equality in 2y + x = 2.

With $I = (x^4, x^2y, xy^3)$, the system of linear inequalities for $I^{\frac{1}{3}}$ is:

» Example

With $I = (x^4, x^2y, xy^3)$, the system of linear inequalities for $\overline{I^{\frac{1}{3}}}$ is:

$$x \ge \frac{1}{3}$$
$$y + 2x \ge \frac{5}{3}$$
$$2y + x \ge \frac{4}{3}$$
$$y \ge 0$$

With $I = (x^4, x^2y, xy^3)$, the system of linear inequalities for $I^{\frac{1}{3}}$ is:

$$x \ge \frac{1}{3}$$
$$y + 2x \ge \frac{5}{3}$$
$$2y + x \ge \frac{4}{3}$$
$$y \ge 0$$

There are no integer solutions since no product and sum of integers is a non-integer.

Jumping Numbers

- * What is a Jumping Number?
- A reformulation
- * Corollaries
- * Worked Example

Using this reformulation, we were able to prove many interesting corollaries:

Using this reformulation, we were able to prove many interesting corollaries:

Rationality (Real Powers Team [Don+21])

Using this reformulation, we were able to prove many interesting corollaries:

Rationality (Real Powers Team [Don+21])

* All jumping numbers are rational.

Using this reformulation, we were able to prove many interesting corollaries:

Rationality (Real Powers
Team [Don+21])
* All jumping numbers are
rational.
* For each
$$r \in \mathbb{R}_+$$
 there
exists $r' \in \mathbb{Q}$ so that
 $\overline{I'} = \overline{I''}$.

Newton Polyhedron for (xy^3, x^2y, x^4)

» Linearity

Since NP(I) is a linear system of inequalities, a notion of multiplicity exists for jumping numbers.

» Linearity

Since NP(I) is a linear system of inequalities, a notion of multiplicity exists for jumping numbers.

Linearity Result (Real Powers Team [Don+21])

If *r* is a jumping number of *I* then *nr* is also a jumping number of *I* for all $n \in \mathbb{N}$.

 $\frac{1}{2} \cdot NP(xy^3, x^2y, x^4)$ and $\frac{3}{2} \cdot NP(xy^3, x^2y, x^4)$

Jumping Numbers

- * What is a Jumping Number?
- * A reformulation
- * Corollaries
- * Worked Example

» Restriction of Solutions

For a given ideal, we can restrict the set of possible jumping numbers using the following lemma:

» Restriction of Solutions

For a given ideal, we can restrict the set of possible jumping numbers using the following lemma:

Restriction Lemma

The equation ax + by = c where *a* and *b* are integers and *c* is not an integer, has no integer solutions.

» Restriction of Solutions

For a given ideal, we can restrict the set of possible jumping numbers using the following lemma:

Restriction Lemma

The equation ax + by = c where *a* and *b* are integers and *c* is not an integer, has no integer solutions.

For example, $2y + x = \frac{8}{5}$ has no integer solutions.

Using these results, we can systematically determine all jumping numbers of a given ideal. We use this to find all jumping numbers of $I = (x^4, x^2y, xy^3)$ that are less than one.

Using these results, we can systematically determine all jumping numbers of a given ideal. We use this to find all jumping numbers of $I = (x^4, x^2y, xy^3)$ that are less than one.

» Scaled Inequalities

Scaling our Newton polyhedron by r we get the following system of inequalities:

 $x \ge r \cdot 1$ $y + 2x \ge r \cdot 5$ $2y + x \ge r \cdot 4$ $y \ge r \cdot 0$

» Scaled Inequalities

Scaling our Newton polyhedron by r we get the following system of inequalities:

 $x \ge r \cdot 1$ $y + 2x \ge r \cdot 5$ $2y + x \ge r \cdot 4$ $y \ge r \cdot 0$

The restriction lemma limits our jumping numbers to those of the form: $\frac{n}{5}$ or $\frac{m}{4}$ for $n, m \in \mathbb{N}$.

» Possible Jumping Numbers

So our possible jumping numbers less than 1 are:

$$\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\}.$$

» Possible Jumping Numbers

So our possible jumping numbers less than $1 \mbox{ are:}$

$$\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\}.$$

We can now manually check the validity of each of these possible jumping numbers.

» $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

» $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

$$x \ge \frac{2}{5}$$
$$y + 2x \ge 2$$
$$2y + x \ge \frac{8}{5}$$
$$y \ge 0$$

 $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

$$x \ge \frac{2}{5}$$
$$y + 2x \ge 2$$
$$2y + x \ge \frac{8}{5}$$
$$y \ge 0$$

» $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

Since $x \ge \frac{2}{5}$ and $y \ge 0$, our only possible integer solution to $y + 2x \ge 2$ is x = 1, y = 0. » $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

Since $x \ge \frac{2}{5}$ and $y \ge 0$, our only possible integer solution to $y + 2x \ge 2$ is x = 1, y = 0. But $2(0) + (1) \ge \frac{8}{5}$ so there are no solutions and $\frac{2}{5}$ is not a jumping number.

» $\frac{2}{5}$ is not a jumping number

We perform the calculation to find that $\frac{2}{5}$ is not a jumping number.

Since $x \ge 1$ and $y \ge 0$, our only possible integer solution to $y + 2x \ge 2$ is x = 1, y = 0. But $2(0) + (1) \not\ge \frac{8}{5}$ so there are no solutions and $\frac{2}{5}$ is not a jumping number.

» Jumping Numbers of (x^4, x^2y, xy^3)

Doing this for every possibility we find the jumping numbers of (x^4,x^2y,xy^3) less than 1 to be:

» Jumping Numbers of (x^4, x^2y, xy^3)

Doing this for every possibility we find the jumping numbers of (x^4, x^2y, xy^3) less than 1 to be:

$$\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{3}{5}, \frac{3}{5}, \frac{4}{5}\}.$$

» Jumping Numbers of (x^4, x^2y, xy^3)

Doing this for every possibility we find the jumping numbers of (x^4, x^2y, xy^3) less than 1 to be:

$$\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{3}{5}, \frac{3}{5}, \frac{4}{5}\}.$$

In fact, $\frac{1}{5}$ and $\frac{2}{5}$ are the only possible jumping numbers which are not jumping numbers. So the full set of jumping numbers of *I* is:

» Jumping Numbers of (x^4, x^2y, xy^3)

Doing this for every possibility we find the jumping numbers of (x^4, x^2y, xy^3) less than 1 to be:

$$\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{3}{5}, \frac{3}{5}, \frac{4}{5}\}.$$

In fact, $\frac{1}{5}$ and $\frac{2}{5}$ are the only possible jumping numbers which are not jumping numbers. So the full set of jumping numbers of *I* is:

$$\{\frac{n}{4}, \frac{m}{5} : n \ge 1, m \ge 3\}.$$

Conclusion
Background Geometric Representations Real Powers Jumping Numbers **Conclusion** Reference ⊙

» Future Work

* Jumping Numbers Algorithm

Background Geometric Representations Real Powers Jumping Numbers **Conclusion** Reference ⊙

» Future Work

- * Jumping Numbers Algorithm
- * Numerical Semi-Groups

Background Geometric Representations Real Powers Jumping Numbers **Conclusion** Reference ⊙

» Future Work

- * Jumping Numbers Algorithm
- * Numerical Semi-Groups
- * Jumping Numbers for classes of ideals (pure, squarefree, etc.)

» References

Sturmfels Miller. Combinatorial Commutative Algebra.
Springer, 2005.
Pratik Dongre et al. Real powers of monomial ideals. 2021.
arXiv: 2101.10462 [math.AC].

Background Geometric Representations Real Powers Jumping Numbers Conclusion **Reference**

» Thank You!

Any Questions?