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Background

Monomial
A monomial is a product of variables.
•x4, x2y and x2yz3 are monomials.

•x + x2 and xy2 − z are polynomials, not monomials.

A monomial is denoted using the shorthand (vector) notation

xa = x1
a1x2

a2 . . . xk
ak.

With this notation, each monomial xa corresponds to the point
(a1, . . . , ak). For example, in the x-y plane,

x4→ (4, 0),

x2y → (2, 1).

Monomial Ideal
Let M = {xa1, . . . ,xan} be a set of monomials. The mono-
mial ideal generated by M , written I = (xa1, . . . ,xan), con-
tains all polynomials which have the form p1x

a1 + . . .+ pnx
an

where each pi is a polynomial.

Convex Representations
Monomials ideals, like monomials, can also be visualized on
the coordinate plane.

•The Newton Polytope of an ideal, written np(I), is the con-
vex hull of the minimal generators of I .

•The Newton Polyhedron of an ideal, written NP (I), is the
convex hull of all monomials in I .

Figure 1 shows np(I) and NP (I) when I = (x4, x2y, xy3).
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Fig. 1: Left: Newton Polytope, Right: Newton Polyhedron

Rational Powers

What is a Rational Power?
A rational power of an ideal, Ir, is the ideal generated by
the lattice points contained in r · NP (I). Figure 2 shows
r ·NP (I) when I = (x4, x2y, xy3) and r = 1

2.
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Looking at the magenta lattice points, we observe that

Ir = (x4, x2y, xy3)
1
2 = (xy, x2).

Minkowski Algorithm for Computing Rational
Powers [1]

We found that the minimal generators of Ir are within a
predetermined bounded distance of r ·np(I). With that, we
designed an algorithm which computes the rational powers
of ideals. Figure 3 highlights the bounded region in green,
in which the minimal generators will be contained.

Outline of the Minkowski Algorithm:

1.Find all lattice points within the predetermined bounded
distance of r · np(I).

2.Compute the ideal generated by these points, giving us Ir.
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Fig. 3: Minkowski Algorithm example

Jumping Numbers

What is a Jumping Number?
We say that r is a jumping number of I if Ir 6= Ir+ε for all
ε > 0.

Figure 4 shows r · NP (I) where I = (x4, x2y, xy3), with
r = 1

2 and
5
8.
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Fig. 4: Left: r =
1

2
, Right: r =

5

8

Note that when r = 1
2, increasing r by a small amount will

exclude the point (2, 0) from r · NP (I). This removes a
minimal generator from r · NP (I), making r = 1

2 a jumping
number of I .

Results [1]

•Jumping numbers correspond to integer solutions to a
bounding equation of r ·NP (I).

• If r is a jumping number of I then nr is also a jumping
number of I for all n ∈ N.

•All jumping numbers are rational.

•All positive rational numbers are jumping numbers.
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