Background

Monomial

- A *monomial* is a product of variables.
- x^4 , x^2y and x^2yz^3 are monomials.
- $x + x^2$ and $xy^2 z$ are polynomials, not monomials.

A monomial is denoted using the shorthand (vector) notation $\mathbf{x}^{\mathbf{a}} = x_1^{\overline{a_1}} x_2^{\overline{a_2}} \overline{\ldots x_k}^{\overline{a_k}}$

With this notation, each monomial $\mathbf{x}^{\mathbf{a}}$ corresponds to the point (a_1, \ldots, a_k) . For example, in the *x*-*y* plane,

$$x^4 \to (4,0),$$
$$x^2 y \to (2,1).$$

Monomial Ideal

Let $M = {\mathbf{x}^{\mathbf{a}_1}, \ldots, \mathbf{x}^{\mathbf{a}_n}}$ be a set of monomials. The monomial ideal generated by M, written $I = (\mathbf{x}^{\mathbf{a_1}}, \ldots, \mathbf{x}^{\mathbf{a_n}})$, contains all polynomials which have the form $p_1 \mathbf{x}^{\mathbf{a_1}} + \ldots + p_n \mathbf{x}^{\mathbf{a_n}}$ where each p_i is a polynomial.

Convex Representations

Monomials ideals, like monomials, can also be visualized on the coordinate plane.

- The Newton Polytope of an ideal, written np(I), is the convex hull of the minimal generators of I.
- The Newton Polyhedron of an ideal, written NP(I), is the convex hull of all monomials in I.

Figure 1 shows np(I) and NP(I) when $I = (x^4, x^2y, xy^3)$.

Fig. 1: Left: Newton Polytope, Right: Newton Polyhedron

RATIONAL POWERS OF MONOMIAL IDEALS

Josiah Lim, Ethan Partida, Ethan Roy 2020 Polymath REU

Rational Powers

What is a Rational Power?

A rational power of an ideal, $\overline{I^r}$, is the ideal generated by the lattice points contained in $r \cdot NP(I)$. Figure 2 shows $r \cdot NP(I)$ when $I = (x^4, x^2y, xy^3)$ and $r = \frac{1}{2}$.

Fig. 2:
$$rac{1}{2} \cdot NP(I)$$

Looking at the magenta lattice points, we observe that

$$f^r = (x^4, x^2y, xy^3)^{\frac{1}{2}} = 1$$

Minkowski Algorithm for Computing Rational Powers [1]

We found that the minimal generators of $\overline{I^r}$ are within a predetermined bounded distance of $r \cdot np(I)$. With that, we designed an algorithm which computes the rational powers of ideals. Figure 3 highlights the bounded region in green, in which the minimal generators will be contained.

Outline of the Minkowski Algorithm:

- 1. Find all lattice points within the predetermined bounded distance of $r \cdot np(I)$.
- 2. Compute the ideal generated by these points, giving us $\overline{I^r}$.

Fig. 3: Minkowski Algorithm example

Minimal Generators

 $(xy, x^2).$

 $r \cdot NP(I)$ Lattice Points Minimal Generators

Jumping Numbers

What is a Jumping Number? $\varepsilon > 0.$

 $r = \frac{1}{2} \text{ and } \frac{5}{8}.$

Note that when $r = \frac{1}{2}$, increasing r by a small amount will exclude the point (2,0) from $r \cdot NP(I)$. This removes a minimal generator from $r \cdot NP(I)$, making $r = \frac{1}{2}$ a jumping number of I.

- bounding equation of $r \cdot NP(I)$.
- number of I for all $n \in \mathbb{N}$.
- All jumping numbers are rational.

Acknowledgments and References

This work was done in collaboration with the 2020 Polymath REU. All thanks to the program and our research mentor Alexandra Seceleanu.

References

[1] Polymath 2020. Rational Powers of Monomial Ideals. in preparation.

Figure 4 shows $r \cdot NP(I)$ where $I = (x^4, x^2y, xy^3)$, with

Results [1]

• Jumping numbers correspond to integer solutions to a

• If r is a jumping number of I then nr is also a jumping

• All positive rational numbers are jumping numbers.