
Background Geometric Representations Real Powers Jumping Numbers

Real Powers of Monomial Ideals
by Josiah Lim, Ethan Roy and Ethan Partida
on Mar 14, 2021

[1/23]



Background Geometric Representations Real Powers Jumping Numbers

» Outline

∗ Background
∗ Geometric Representations
∗ Real Powers
∗ Jumping numbers

[2/23]



Background
∗ What is a Monomial?
∗ What is a Monomial Ideal?



Background
∗ What is a Monomial?
∗ What is a Monomial Ideal?



Background Geometric Representations Real Powers Jumping Numbers

» What is a monomial?

Definition (Monomial)

A monomial is a product of variables with nonnegative
integer exponents.

Examples

x4, x2y and xyz are monomials.

Non-examples

x + y and xy − z are polynomials, not monomials.
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» What is a Monomial Ideal?

Definition (Monomial Ideal)

Let M = {m1, . . . ,mk} be a set of monomials. The ideal
generated by M, written I = (m1, . . . ,mk), is the set
containing all polynomials which have the form
p1m1 + . . .+ pkmk where each pi is a polynomial.
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» Monomials→ Lattice Points

∗ We can match each monomial to a lattice point on the coordinate
plane.

∗ This is easy, since we are working with monomials.

Example

In the xy plane,

xy3 → (1, 3)

x2y → (2, 1)

x4 → (4, 0)
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» Monomial Ideals→ Lattice Points
∗ Monomials ideals may seem complicated, but pictures are not!

∗ For the ideal I = (xy3, x2y , x4), the generators are (1, 3), (2, 1)
and (4, 0).

Generators of the ideal I = (xy3, x2y , x4)
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» What is a Newton Polytope?

Definition (Newton Polytope)

The newton polytope of an ideal I, np(I), is the convex hull
of the generators of I. ("rubber band around the points")

Example: Newton Polytope of I = (xy3, x2y , x4)
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» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The newton polyhedron of an ideal I, NP(I), is the convex
hull of all monomials contained in I. ("everything up and
right of the newton polytope")

Newton Polyhedron of I = (xy3, x2y , x4)
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» What is a Real Power?

Definition (Real Power)

The real power r of an ideal I, I r , is the ideal generated by
the lattice points contained in r · NP(I).
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» Example of Real Power

Let I = (xy3, x2y , x4) and r = 1
2 .

To compute I 1
2 , we first find 1

2 · NP(I).

Left: NP(I) Right: 1
2
· NP(I)
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» Example of Real Power

By looking at the lattice points, we find that
I 1
2 = (x4, x2y , xy3)

1
2 = (xy , x2).
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» Why compute the real powers?

1. Not much is known about real powers
2. Looking for Patterns
3. Patterns require lots of examples
4. Examples are hard to compute

∗ computer program FASTER than working it out by hand
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» Minkowski Algorithm

Theorem (Minkowski Algorithm, loose version)

The minimal generators of I r are within a predetermined
bounded distance of r · np(I).

Algorithm Steps:
1. Minkowski sum allows us to find all points within this bounded

distance of r · np(I)
2. We then compute the ideal generated by these points, this is I r .
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» Jumping Numbers

Left: NP(I) Right: 1
2
· NP(I)
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» What is a jumping number?

Definition (Jumping Number)

We say that a number r is a jumping number if I r ̸= I r+ϵ for
all ϵ > 0.

For I = (x4, x2y , xy3), we have that
∗ 1

2 is a jumping number
∗ 1

3 is not a jumping number
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» 1
2
is a jumping number

Increasing 1
2 just a little bit will no longer include the point (2, 0). This

removes a minimal generator and changes the ideal. Thus 1
2 is a

jumping number.
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» 1
3
is not a jumping number

∗ By looking at r · NP(I) we can determine I r

∗ Thus we can see, I 1
2 = I 1

3
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» A new perspective

We can describe newton polyhedron by a system of linear inequalities.

Newton Polyhedron of (xy3, x2y , x4)
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» A new perspective

Scaling a newton polyhedron corresponds to scaling constants in our
inequalities.

Newton Polyhedron of (xy3, x2y , x4)
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» A new perspective

Notice that (2, 0) gives equality in 2y + x ≥ 1
2 · 4 and inequality for the

rest of our bounding equations.

Newton Polyhedron of (xy3, x2y , x4)
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» A new perspective

Theorem
r ∈ R is a jumping number for a monomial ideal I if and only
if there is an integer solution to the (interesting) bounding
inequalities of r · NP(I).
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» Corollaries

Using this reformulation, we were able to prove many interesting
corollaries:

Results

∗ All jumping numbers are rational.
∗ For each r ∈ R+ there exists r ′ ∈ Q so that I r = I r ′ .
∗ If r is a jumping number of I then nr is also a jumping

number of I for all n ∈ N.
∗ If v is a vertex of NP(I), then for all n ∈ N the number

rn = n
gcd(v1,··· ,vd )

is a jumping number of I .
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» Thank You!

Any Questions?
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