Real Powers of Monomial Ideals

by Josiah Lim, Ethan Roy and Ethan Partida
on Mar 14, 2021

» Outline

* Background
* Geometric Representations
* Real Powers
* Jumping numbers

Background

* What is a Monomial?
* What is a Monomial Ideal?

Background

* What is a Monomial?
* What is a Monomial Ideal?
» What is a monomial?

Definition (Monomial)

A monomial is a product of variables with nonnegative integer exponents.
» What is a monomial?

Definition (Monomial)

A monomial is a product of variables with nonnegative integer exponents.

Examples

$x^{4}, x^{2} y$ and $x y z$ are monomials.

» What is a monomial?

Definition (Monomial)

A monomial is a product of variables with nonnegative integer exponents.

Examples

$x^{4}, x^{2} y$ and $x y z$ are monomials.

Non-examples

$x+y$ and $x y-z$ are polynomials, not monomials.

Background

* What is a Monomial?
* What is a Monomial Ideal?

» What is a Monomial Ideal?

Definition (Monomial Ideal)

Let $M=\left\{m_{1}, \ldots, m_{k}\right\}$ be a set of monomials. The ideal generated by M, written $I=\left(m_{1}, \ldots, m_{k}\right)$, is the set containing all polynomials which have the form $p_{1} \mathrm{~m}_{1}+\ldots+p_{k} \mathrm{~m}_{k}$ where each p_{i} is a polynomial.

Geometric Representations

* Monomials and Monomial Ideals \rightarrow Lattice Points
* What is a Newton Polytope?
* What is a Newton Polyhedron?

Geometric Representations

* Monomials and Monomial Ideals \rightarrow Lattice Points
* What is a Newton Polytope?
* What is a Newton Polyhedron?

» Monomials \rightarrow Lattice Points

* We can match each monomial to a lattice point on the coordinate plane.
* This is easy, since we are working with monomials.

» Monomials \rightarrow Lattice Points

* We can match each monomial to a lattice point on the coordinate plane.
* This is easy, since we are working with monomials.

Example

In the xy plane,

$$
\begin{aligned}
x y^{3} & \rightarrow(1,3) \\
x^{2} y & \rightarrow(2,1) \\
x^{4} & \rightarrow(4,0)
\end{aligned}
$$

» Monomial Ideals \rightarrow Lattice Points

* Monomials ideals may seem complicated, but pictures are not!

» Monomial Ideals \rightarrow Lattice Points

* Monomials ideals may seem complicated, but pictures are not!
* For the ideal $I=\left(x y^{3}, x^{2} y, x^{4}\right)$, the generators are $(1,3),(2,1)$ and $(4,0)$.

Generators of the ideal $I=\left(x y^{3}, x^{2} y, x^{4}\right)$

Geometric Representations

* Monomials and Monomial Ideals - Lattice Points
* What is a Newton Polytope?
* What is a Newton Polyhedron?

» What is a Newton Polytope?

Definition (Newton Polytope)

The newton polytope of an ideal $I, n p(I)$, is the convex hull of the generators of I. ("rubber band around the points")

Example: Newton Polytope of $I=\left(x y^{3}, x^{2} y, x^{4}\right)$

Geometric Representations

* Monomials and Monomial Ideals \rightarrow Lattice Points
* What is a Newton Polytope?
* What is a Newton Polyhedron?

» What is a Newton Polyhedron?

Definition (Newton Polyhedron)

The newton polyhedron of an ideal $I, N P(I)$, is the convex hull of all monomials contained in I. ("everything up and right of the newton polytope")

Newton Polyhedron of $I=\left(x y^{3}, x^{2} y, x^{4}\right)$

Real Powers

* What is a Real Power?
* Computing Real Powers

Real Powers

* What is a Real Power?
* Computing Real Powers
» What is a Real Power?

Definition (Real Power)

The real power r of an ideal $I, \overline{I^{r}}$, is the ideal generated by the lattice points contained in $r \cdot N P(I)$.

» Example of Real Power

Let $I=\left(x y^{3}, x^{2} y, x^{4}\right)$ and $r=\frac{1}{2}$.
To compute $I^{\frac{1}{2}}$, we first find $\frac{1}{2} \cdot N P(I)$.

Left: $N P(1)$

Right: $\frac{1}{2} \cdot N P(I)$

» Example of Real Power

By looking at the lattice points, we find that $I^{\frac{1}{2}}=\overline{\left(x^{4}, x^{2} y, x y^{3}\right)^{\frac{1}{2}}}=\left(x y, x^{2}\right)$.

Real Powers

* What is a Real Power?
* Computing Real Powers
» Why compute the real powers?

» Why compute the real powers?

1. Not much is known about real powers
» Why compute the real powers?
2. Not much is known about real powers
3. Looking for Patterns
» Why compute the real powers?
4. Not much is known about real powers
5. Looking for Patterns
6. Patterns require lots of examples

» Why compute the real powers?

1. Not much is known about real powers
2. Looking for Patterns
3. Patterns require lots of examples
4. Examples are hard to compute

* computer program FASTER than working it out by hand

» Minkowski Algorithm

Theorem (Minkowski Algorithm, loose version)

The minimal generators of $\overline{/ r}$ are within a predetermined bounded distance of $r \cdot n p(I)$.

» Minkowski Algorithm

Theorem (Minkowski Algorithm, loose version)

The minimal generators of $\overline{/ r}$ are within a predetermined bounded distance of $r \cdot n p(I)$.

Algorithm Steps:

1. Minkowski sum allows us to find all points within this bounded distance of $r \cdot n p(I)$
2. We then compute the ideal generated by these points, this is I^{r}.

Jumping Numbers

» Jumping Numbers

» What is a jumping number?

Definition (Jumping Number)

We say that a number r is a jumping number if $\overline{I^{r}} \neq \overline{I^{r+\epsilon}}$ for all $\epsilon>0$.

For $I=\left(x^{4}, x^{2} y, x y^{3}\right)$, we have that

* $\frac{1}{2}$ is a jumping number
* $\frac{1}{3}$ is not a jumping number
» $\frac{1}{2}$ is a jumping number
Increasing $\frac{1}{2}$ just a little bit will no longer include the point $(2,0)$. This removes a minimal generator and changes the ideal. Thus $\frac{1}{2}$ is a jumping number.

» $\frac{1}{3}$ is not a jumping number
* By looking at $r \cdot N P(I)$ we can determine $\overline{I r}$
* Thus we can see, $\overline{I^{\frac{1}{2}}}=\overline{I^{\frac{1}{3}}}$

$$
r=\frac{1}{3} \mathrm{vs} r=\frac{1}{2}
$$

» A new perspective

We can describe newton polyhedron by a system of linear inequalities.

Newton Polyhedron of $\left(x y^{3}, x^{2} y, x^{4}\right)$

» A new perspective

Scaling a newton polyhedron corresponds to scaling constants in our inequalities.

$$
\text { Newton Polyhedron of } \overline{\left(x y^{3}, x^{2} y, x^{4}\right)^{\frac{1}{2}}}
$$

» A new perspective

Notice that $(2,0)$ gives equality in $2 y+x \geq \frac{1}{2} \cdot 4$ and inequality for the rest of our bounding equations.

Newton Polyhedron of $\overline{\left(x y^{3}, x^{2} y, x^{4}\right)^{\frac{1}{2}}}$

» A new perspective

Theorem

$r \in \mathbb{R}$ is a jumping number for a monomial ideal / if and only if there is an integer solution to the (interesting) bounding inequalities of $r \cdot N P(I)$.
» Corollaries

Using this reformulation, we were able to prove many interesting corollaries:

Results

» Corollaries

Using this reformulation, we were able to prove many interesting corollaries:

Results

* All jumping numbers are rational.
» Corollaries

Using this reformulation, we were able to prove many interesting corollaries:

Results

* All jumping numbers are rational.
* For each $r \in \mathbb{R}_{+}$there exists $r^{\prime} \in \mathbb{Q}$ so that $\overline{I^{r}}=\overline{I^{\prime}}$.

» Corollaries

Using this reformulation, we were able to prove many interesting corollaries:

Results

* All jumping numbers are rational.
* For each $r \in \mathbb{R}_{+}$there exists $r^{\prime} \in \mathbb{Q}$ so that $\overline{I r}=\overline{I r^{\prime}}$.
* If r is a jumping number of $/$ then $n r$ is also a jumping number of I for all $n \in \mathbb{N}$.

» Corollaries

Using this reformulation, we were able to prove many interesting corollaries:

Results

* All jumping numbers are rational.
* For each $r \in \mathbb{R}_{+}$there exists $r^{\prime} \in \mathbb{Q}$ so that $\overline{I r}=\overline{I r^{\prime}}$.
* If r is a jumping number of I then $n r$ is also a jumping number of I for all $n \in \mathbb{N}$.
* If v is a vertex of $N P(I)$, then for all $n \in \mathbb{N}$ the number $r_{n}=\frac{n}{\operatorname{gcd}\left(v_{1}, \cdots, v_{d}\right)}$ is a jumping number of I.

» Thank You!

Any Questions?

